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Chapter 1

Introduction

When we study a complex system it is natural to be interested in the organization or
structure of its elements, as opposed to just caring about the individual characteristics
of the components. The traditional way to deal with this issue has been through a char-
acterization of the structure by the use of graphs (or networks), where nodes represent
the components of the system, and an edge exists between two of them if there is a
relation connecting them.

Network theory has proved to be extremely productive dealing with a huge number
of problems from a great number of fields. The theory is nevertheless only appropriate
for the description of systems with binary underlying relations between the components.
Well, manifold situations have more complex relations among the elements.

Multilayer networks could be used for the study of many types of binary links si-
multaneously, and when the connections are not binary but multiple one could use
hypergraphs. None of these frameworks seems to effectively treat the case where con-
nections exist between an element and a group. We propose here the use of pretopology
to fill this gap.

A pretopological space, in its most general form, is defined only by a pseudoclosure
function that associates any set to an equal or bigger set. Three other axioms can be
added in order to get less general spaces with more powerful theorems. By combining
some of these axioms one can get the definition of a graph or that of a topological space.
Pretopology is then a generalization of those two theories.

For some spaces we can get an equivalent definition by associating a family of sets
(i.e. the basis of a prefilter of neighborhoods) to each element, and joining to the
pseudoclosure of a set all those elements that intersect the set with every neighborhood.
This other way of conceiving the problem, where instead of interrogate a set about its
pseudoclosure, we ask every external element whether it belongs to it or not, has proven
to be very productive and it is the one that is usually employed in practice.

Many generalizations of this last notion exist where rather than asking for every
neighborhood to intersect the set, we state more complex rules to decide if an element
belongs to the pseudoclosure. This has allowed to have more flexibility when defin-
ing a pretopological space in exchange of the mathematical equivalence between both
definitions.

In its functional version a pretopology presents itself very naturally as a framework
to study dynamic phenomena, such as the diffusion or expansion of a part of a system.
The presentation in terms of neighborhoods, on the other hand, invites to model systems
where relations exist between an element and a set, either because the relation can be
naturally expressed that way, or because it emerges from a combination of multiple
binary relations.

It is interesting to realize how in the same way a directed graph can be used to study
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the influence of the components of a system -which is something static-, and problems
of flux optimization -which is a dynamic phenomena-, also pretopology can use the
same mathematical object to study the fixed structure and the dynamics of a system
depending on the interpretation we give to the components.

Although pretopology has already been successfully used as a modeling tool on a
number of different real problems, its popularity is still quite inferior than that of the
other theories previously mentioned. We believe this is partly due to the complexity of
its definition in terms of sets. Indeed, in its functional version, only the definition of the
space would need to list the image under the pseudoclosure function for every possible
subset of the system. Now, that list becomes intractable extremely fast.

In order to overcome that problem, researchers have generalized more and more the
definition in terms of neighborhoods. None of those generalizations though, includes
all of the others. We found ourselves then with a great number of conceptually similar
studies (they all use the language of pretopology), but with little in common from a
practical point of view: each work represents the space in the computer in a different
fashion -usually without giving details-, and implements the traditional metrics in its
own way. The inconvenience of this is obvious: not only there is a lot of redundant work,
since we have to remake what has already been done many times, but also it becomes
very difficult to build on the work of others.

The goals of this thesis are three: the first is to give an answer to the need of
homogenization that was just evoked; the second is to improve the existent results from
an algorithmic point of view; and the last one is to use the theory in an original form
to solve some real problems.

The PhD is structured in the following way: we begin by describing the landscape
of structural frameworks and some of their applications. This should convince us of the
utility and importance of choosing the right framework for the study of a problem.

We then present our contributions, starting with our formalization of a pretopological
space in terms of a simple group of rules over a set of networks. We show the generality
of this procedure by presenting a great number of previous works formalized in this
manner.

The rest of the contributions section introduce or discuss some metrics and algo-
rithms over a pretopological space. Some of the algorithms are improved, and the use
of our framework shows its first utility by allowing us to study more precisely the com-
plexity of the calculations.

The last part is dedicated to applications. The first of them is a Python library
where all of the previously reviewed algorithms are implemented. After presenting in a
general manner the faculties of the library, we use it to study some diffusion phenomena
with the help of some agent based models.

A final application concerns clusterization. We use some of the notions introduced
here for the first time to develop a clusterization algorithm, that not only performs on
a par with the state of the art on some artificial geometrical data, but also has the
advantage of being immediately generalizable to non-metrical spaces.

The document ends discussing the results obtained, as well as a great number of
research subjects that follow naturally from the framework and results presented here.

2 JULIO LABORDE



Chapter 1. CONTEXT

Figure 1.1: Schematic representation of the context
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Figure 1.2: Schematic representation of the algorithmic contributions
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Figure 1.3: Schematic representation of the applications
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Part I

Context
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Chapter 2

Structural Frameworks

This chapter will present the context necessary to understand the main premise of the
thesis, that pretopology can be a useful structural framework, i.e. a mathematical object
used to characterize the relations of the parts of a system.

The context is divided in two parts. First, we give a brief recount of graph theory
and some related theories. This has three objectives:

• To understand the role and the benefits of choosing a good framework to study
the relations inside a system.

• To understand the limitations of these theories, and see what could be done to
overcome them.

• To have in mind these more popular theories, so they can be used as analogies or
points of reference when trying to understand the concepts of pretopology.

The second part presents the definition of a pretopological space and some of the
concepts of the theory. We also mention a few applications to render the definitions
more concrete.

2.1 Graphs

A graph G(V, E) is a mathematical object composed of a set V of elements called nodes,
and a set E ⊂ V × V of unordered pairs of nodes called edges [21]. We say that an edge
connects a pair of nodes. Graphs can be easily drawn by associating nodes to points or
circles, and lines between them when there is an edge connecting them. A draw of a
graph can be seen in figure 2.1.

A graph is said to be directed if the set of its edges is composed of ordered pairs.
We say then that an edge x0x1 goes from x0 to x1 and we draw it with an arrow pointing
from x0 to x1.

A graph is said to be weighted if each edge has a number associated to it.

Definition 2.1. A path is a graph P of the form:

V(P) = {x0, x1, . . . , xl}, E(P) = V(P) = {x0x1, x1x2, . . . , xl−1xl}

This path P is usually denoted by x0x1 . . . xl and its length is the cardinality of the
set of edges. Simply put, a path is a tuple of edges, where each edge -except the first
and the last one- has one vertex in common with the previous edge, and the other in
common with the following edge.

9



2.1. GRAPHS

Ideas related to graph theory can be traced back as far as the eighteenth century, with
the famous seven bridges problem of Königsberg. The city of Königsberg had the same
configuration than the center of Paris, with two river banks and two small islands, and
had seven bridges connecting the four different pieces of land. There was the question
of the possibility to make a walk that would cross each bridge exactly once. Leonard
Euler solved the problem negatively by associating a graph to the city: nodes were the
pieces of land, edges were the bridges.

Although the idea of a graph has almost three centuries, it was only in 1936 that
Dénes Kőnig published the first book on what is now called graph theory. On the other
hand, also in the thirties, Moreno was introducing the concept of sociogram, which was
a diagram of points and lines representing relations among people, a precursor to the
graph representation for a system.

Nowadays, when a graph is applied to describe a real system it is usually called a
network [131, 12]. In these cases we associate the components with nodes, and edges
with connections or relations between the components. Although the difference between
a graph and a network may play a role sometimes, as when studying the complexity of
graph algorithms that work well on real cases but have bad worst case performance [48],
during the thesis we will use both concepts more or less indistinctly.

Figure 2.1: Example of a Graph

2.1.1 Metrics

When we associate a graph to a system, when can start studying the metrics (or mea-
sures) of the graph to see what they can teach us about the system. A metric is a
calculation defined on the graph in order to quantitatively differentiate nodes according
to their structural position, or to differentiate among diverse graphs. Most of these
different calculations are defined so they can capture in an unambiguous fashion some
natural concepts used to qualify the members of a system.

Centrality [24, 25] is one of the most important and widely used conceptual tools
for analyzing networks. Although many different definitions of what it means to be
central exist, they all share the intention of assigning a bigger centrality score to the
more important nodes. It is off course the notion of importance that changes according
to the system or phenomenon one is trying to model.

In 1979, Freeman [62] put some order in the multitude of centrality measures pro-
posed, categorizing some of them into three basic classes: degree, closeness and between-
ness. Although these too are notions that have sometimes more than one definition [105],

10 JULIO LABORDE



Chapter 2. CONTEXT

the most canonical definitions are the following:

• The degree of a node is the number of neighbors the node has in the graph, that
is, the number of nodes that are connected to the node by an edge. In a Social
network, a node with a high degree represents an individual that knows a lot of
people, and for that same reason he/she is likely to be an important person.

• The betweenness centrality is defined as follows:

b(x) =
∑
s,v,t

σst (v)

σst

Where σst is the number of shortest paths between s and t, and σst (v) is the
number of those paths that passes through v. In other words, the betweenness
centrality of a node n0 is computed by taking the shortest paths between every
couple of nodes in the graph, and calculating the fraction of them that include n0.
If the fraction is high it would mean that when two nodes want to communicate
in an optimal way (through their shortest path), then there is a good chance that
they will pass through this node. A node with these characteristics could have
capital importance if we wanted to hinder the communication inside of a network.

• The closeness centrality is defined as follows:

C(x) =
1∑

y d(y, x)

It is the inverse of the sum of the distances to every other node. So nodes will
be more central, the shorter the distance to every other node in the network.
Importance here can translate the capacity to communicate an information to
every other node in the fastest possible manner.

The metrics we have mentioned so far concern particular nodes. Other metrics try
to capture properties of the network as a whole. One such property is the clustering
coefficient of the network C = 3×Number of triangles

Number of connected triplets . This tries to measure how
likely is for two neighbors of a node to be neighbors among them. This metric is usually
important because it allows to uncover a phenomenon that we find very frequently on
social networks; indeed, it is a lot more likely for two friends of someone to be acquainted
among them, than for two randomly selected people.

Figure 2.2 shows a graphical representation of some of the metrics presented.

2.1.2 Spectral Graph Theory

Graphs can also be expressed in terms of matrices, and this other representation also
allows to get important insights into the structure of the system we are modeling. The
study of a graph using matrices is called spectral graph theory.

The most fundamental matrix associated to a graph is the adjacency matrix of the
graph. This is a V ×V square matrix A, such that Ai j = 1 if there is an edge going from
node i to node j.

As a simple example of the utility of the adjacency matrix, we can mention how An

gives us the number of paths of length n between any pair of elements.
One of the most interesting applications of the adjacency matrix is in the context

of the centrality of a node. Let’s suppose that every node has a value that quantifies
how important it is, and let’s suppose in addition that the importance of a node is

JULIO LABORDE 11



2.1. GRAPHS

Figure 2.2: Graph Metrics

proportional by a factor of λ to how important are the nodes connected to it. If we
put the importance of the nodes in a vector x, then x would comply with the following
equation:

Ax = λx

Now, solving this equation boils down to finding an eigenvalue and an eigenvector
for the linear transformation defined by the adjacency matrix. This is called eigenvector
centrality. Variations of this idea can be found in the Katz centrality, and the very
popular pagerank [20], that is at the base of google.

2.1.3 Network Models

So far, the way of extracting information from a system by the use of networks, has been
by identifying a graph with the system at a point in time, and see what kind of static
properties that graph has. There are other ways in which network theory has helped
understanding some complex systems, where instead of having a single network to which
we apply a metric, we have a model explaining the origin of the network. These are
called dynamic network models [3, 65, 4], since they are concerned with the mechanisms
governing changes in the network over time.

The most paradigmatic works in that field come from the late nineties and the
beginning of this century, where physicists started applying the same kind of thinking
they were using in statistical mechanics to the study of real networks. This approach was
not that different from some work on random graphs from the sixties (c.r. see bellow),
where parameters of a model defining a graph were tuned to study some emergent
properties, but the motivations where different. The interest being applicative in the
former, and mathematical in the later.

12 JULIO LABORDE



Chapter 2. CONTEXT

The reasons for this change of interest are certainly related to the development of
computers during those decades. Computers and their ubiquitous use had changed the
possibility of studying networks in three very concrete ways: they had created new
complex systems (the WWW and the Internet being two emblematic examples), they
were allowing to gather more and more data about those and other systems; and they
were allowing to make huge calculations numerically.

We will now briefly examine three of those dynamical models, and see how each of
them allowed to better understand the origin of some empirically observed properties of
real networks.

2.1.3.1 Erdős-Rényi

This model was presented in 1959 [55], and although its motivation was mostly mathe-
matical, it was this model that guided the thinking about complex networks for decades
since its introduction [4].

The model starts with N nodes and connects every pair of nodes with probability
p, resulting in a graph with approximately p N (N−1)

2 nodes distributed randomly. The
distribution of the degrees over the whole graph, for N sufficiently large, approximates
a Poisson distribution.

The authors studied then a series of properties of the emergent graphs for different
values of p. Probably the most interesting of those results concerns the existence of a
threshold of connectivity. Indeed, the authors had shown that:

• If p < (1−ε) ln n
n , the graph will be almost surely disconnected.

• If p > (1−ε) ln n
n , the graph will be almost surely connected.

Proving this way that (1−ε) ln n
n is a threshold for the connectedness of the graph.

2.1.3.2 Watts-Strowgatz

In 1998 Watts and Strowgatz presented a model that allowed to study in a formal way
the so called small world phenomenon [133].

Already in 1929 the Hungarian writer Frigyes Karinthy [103] had published a short
story arguing how closely we are all connected to each other in the world. The story
presents two characters discussing, one of them telling the other that a person was
probably not more than five or six steps away from any other, if they followed the path
of social acquaintances. After discussing two examples, the other person seems more or
less convinced about the truth of the statement.

A couple of decades later, in 1967 [126], Milgram tried to frame this same idea into
a more scientific setting. He set up an experiment where a letter with a name and an
address was given to a few hundreds of people randomly selected in some state. The
person was instructed to send this letter to someone he knew, and he thought to have
more chances of knowing the individual whose name was on the letter. By collecting the
letters arriving to the destination, and studying the intermediary senders, Milgram was
able to study the average degree of separation between people. Although the experiment
was far from perfect, and many of the letters never arrived, the same average six degrees
already speculated were found.

The model of Watts-Strowgatz was designed to systematically study this phenomenon,
by tuning some parameters. The exact model is the following: a set of N nodes is evenly
ranged around a ring, and every node is connected to the closest K

2 nodes in each of the
directions of the ring. N and K are such that N � K � ln N � 1. We get then a regular
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lattice where every node has K neighbors. We take then every node, and we rewire each
edge with probability 0 < β < 1 to a different node selected randomly.

For a small β the model allows to have a very clusterized network -which is a typical
characteristic of social networks-, but still be extremely well connected, since even a
small increment in β dramatically reduces the average shortest paths of the network.

2.1.3.3 Barabasi-Albert

Although useful to understand some of the dynamics of real networks, a piece of empirical
information was missing from the previous models: nor the Erdős-Rényi, nor the Watts-
Strowgatz model generated graphs with a power law degree distribution, i.e. a degree
distribution of the form P(k) ∼ k−γ. Now, although sometimes exaggerated [39], it is
still widely agreed that this distribution is present in parts of many real networks. The
presence of that distribution implies among other things that the number of nodes with
high degree is quite large comparing with the Poisson distribution generated by the
other models.

In 1999 Barabasi and Albert devised a mechanism that could at the same time have
a natural interpretation, and generate a graph with a power law degree distribution
[11]. For this, two new ingredients were added to the model: growth and preferential
attachment.

For what concerns growth, the previous models were using a number N of nodes that
didn’t change over time. The Barabasi-Albert model proposed to start with a few nodes,
and add more of them in discrete time steps.

Preferential attachment, on the other hand, formalizes the ”the rich gets richer”
notion, so nodes having a large degree are more likely to increase their degree even
more.

The exact model is the following: we begin with a completely connected graph with
m0 nodes. We add new nodes one at a time, and we connect them with m of the existing
nodes. Each new node is connected to a node i with a probability pi =

ki∑
j k j

-where ki
is the degree of the node-, so the larger the degree of a node, the bigger the probability
for a new node of connecting to it.

The resulting graph has both a power law degree distribution, and a clustering degree
(empirically calculated) much higher than a random graph.

These are just a few emblematic examples of dynamic random networks. All of them
have been modified in many different ways to better account for real phenomena. Still
they show very clearly the way of approaching the problem, where a building mechanism
with a natural interpretation is proposed, some properties of the resulting graph are
known, and the fact that the model generates these properties helps to confirm the
intuitions behind the model proposed. This same kind of approach will be seen in the
application part of the thesis, when we will talk about agent-based models.

2.1.4 Group Centrality

Although most network studies concentrate on properties of either some individual
nodes, or the network as a whole, some work has been done to study groups of nodes.
In particular Everett and Borgatti [57] generalized some centrality notions to a group
of nodes. These group notions have not had the same impact in network studies than
their individual counterparts, but we thought it important to have them in mind when
will present pretopology, since that is also a framework for the study of group relations.

14 JULIO LABORDE



Chapter 2. CONTEXT

Everett and Borgatti decided to generalize only the canonical measures for the three
metrics selected by Freeman: degree, closeness and betweenness. As a main guideline
in their generalizations, they had in mind that it should keep the same metric when the
group considered is a singleton.

2.1.4.1 Degree Centrality

The group degree centrality of a set C is defined as follows:

Group Degree Centrality = N(C)

Normalized Group Degree Centrality =
N(C)

V − C

Where N(C) is the set of networks that have at least one neighbor in C.
The first thing that one should notice is that an external element connected to the

group is only counted once. More than one connection to the same element is just
redundant.

The idea of the normalization is to be able to compare among different groups. The
authors justify the choice of denominator as that is the maximum size N(C) can have.
The normalization has as a consequence that among two sets with equal number of
connexions, it is the bigger one that will be considered more central. This could make
the choice of denominator look debatable, but it may be argued that the most central
group will be the one that will cover more agents between the group and its connexions.

Figure 2.3: Group degree centrality
Two groups with the same sum of individual degrees, but different group degree.

2.1.4.2 Closeness Centrality

The group closeness centrality is defined as follows:

Dx(C)= {d(x, c), c ∈ C}, x ∈ V − C
D f (x,C)= f (Dx)

Where f = min, max, mean, or meadian.

Group Closeness =
∑

x∈V−C

df (x,C)

Normalized Group Closeness =
V − C∑

x∈V−C df (x,C)
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In other words, Dx is the set of distances (i.e. shortest path lengths) from x to
every member of C, and D f (x,C) is function that will take Dx and will transform it into
a single number. This could be the minimum of the set, the maximum, the mean or
the median. All of them will comply with the demand of being equal to the classical
definition when singletons are considered.

So we can see that there is not a singular generalization of the concept, but a group
of them. The choice of one particular distance is dependent on the problem we are
trying to solve. If we are in a context where we model communication over edges, and
we consider that the information arrives to the group as soon as one element of the
group receives it, then the minimum distance is appropriate. If on the other hand, we
need that all the nodes of the group receive the information before considering that the
group is informed, then the maximum distance will be a better choice.

2.1.4.3 Betweenness Centrality

The extension of betweenness centrality is more straight forward than that of closeness.
To calculate the centrality of the set C, we just need to calculate the number of shortest
paths between pairs of nodes outside C and see how many of those pass through C. This
extension, as that of the degree, is unique.

Group Betweenness Centrality =
∑

s,t | {s,t }∩C=�

σst (C)
σst

Where σst is the number of shortest paths that pass between s and t, and σst (C), is
the number of those paths that passes through C.

This metric can again be normalized by the maximum value the metric could take.
This is (V−C )(V−C−1)

2 . We get then:

Normalized Group Betweenness Centrality =
2 ·

∑
s,t | {s,t }∩C=�

σst (C)
σst

(V − C)(V − C − 1)

2.1.5 Applications

It is probably no longer necessary to try to convince about the great contributions that
network science has done in almost every field of knowledge: physics, biology, linguistics,
computer science, sociology. Networks are present at the heart of almost every system of
transportation or communication used every day. As way of conclusion we will mention
two examples among the myriad applications existent.

Besides the obvious connexions to the Internet and other local computer networks,
where they play a key role in the design of the structure or the communication protocols,
many other applications of networks can be found in the realm of computers. One
relatively recent example is that of graph databases, where relational databases are now
identified with graphs and queries are expressed using the semantics of the theory.

Networks have also played a key role in epidemic studies. An interesting example of
this can be found in [42], where a network representing connections between susceptible
people is presented and strategies of vaccination are tested. Turns out, the best random
strategy consists in selecting random individuals, and then vaccinating a random neigh-
bor of those individuals. The idea is that we are looking for the spreaders, those that
have the largest number of connections, but it is not always evident who they are. By
selecting someone randomly, and then selecting a neighbor, we are augmenting the prob-
ability of selecting a spreader, since they will be connected to most of the individuals
that we may end up picking in the first place.
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2.1.6 Multilayer Networks

A lot work has been done in the last decade on multilayer networks [49, 80, 5]. These
are structures that consist of a set of regular networks, and potentially some connections
between nodes on different networks. We can see a graphical representation in figure
2.4.

There have been three main uses for multilayer networks as a modeling tool:

• Each network is a snapshot in time of the relations in a same population.

• Each network represents different types of relations inside a unique population.

• Each network represents a different population.

Although many results have been found, they came from different fields, and there
hasn’t been a uniform way to deal with the subject. Even the name hasn’t been unique:
they have been referred as multiplex networks, interdependent networks, networks of
networks and many others.

Some effort has been done recently [49] to generate a uniform framework to encom-
pass all work done on multilayer networks. The authors propose to use tensor notation
as a way to encode a multilayer network. They define the intra-layer adjacency tensor:

Wα
β (k̃) =

N∑
i, j=1

wi j(k̃)Eα
β (i j)

Where N is the number of element in a singular network. This is the object describing
the relations inside the layer k̃; the tilde being there to indicate that is the index of a
layer. So for a multilayer network with a singular unweighted network, we would have
wi j(k̃) = ai j , where ai j is the i, j entry of the adjacency matrix.

To describe connections between layers the inter-layer adjacency tensor Cα
β (h̃k̃) is

introduced, which corresponds to Wα
β (k̃) when h̃ = k̃. So, if we denote the canonical

basis Eγ̃

δ̃
(h̃k̃) = eγ̃(h̃)eδ̃(k̃), we can write the multilayer adjacency tensor as:

Mαγ̃

βδ̃
=

L∑
h̃,k̃=1

Cα
β (h̃k̃)Eγ̃

δ̃
(h̃k̃)

Where L is the number of layers. As with the case of the adjacency matrix, the tensor
representation is not only a formal way to encode a multilayer network, but also allows for
some notions of spectral graph theory to be extended to its tensor counterparts [121]. In
particular De Domino et al. [49] showed how to extend the notions of degree centrality,
clustering coefficients, eigenvector centrality, modularity, Von Neumann entropy, and
diffusion.

We finish this section mentioning two examples of application of multilayer networks:

• Buldyrev et al. [35] studied an interdependent network of power grids and com-
puters, where the malfunctioning of nodes in one layer could affect the functioning
of the nodes in the other layer: a power shutdown would alter the functioning
of computers, and the computers played a role controlling the power grids. This
model showed that this two layer version was less robust than a singular layer
model, since fragile nodes in one layer could damage strong/important nodes in
the other.
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• Finn et al. [60] modeled a society of baboons using a two layer network, where each
network encoded one type of relation: grooming and proximity. A comparison of
the centrality of the baboons using this model with the centrality of the aggregated
network, showed a difference in results. This is natural, since the aggregated
version considers links in different networks to be redundant, when this is clearly
not the case for that particular problem.

Figure 2.4: Multilayer network

2.1.7 Hypergraphs

For the sake of completeness we will mention the hypergraphs, although they have
being significantly less used as a modeling tool. In a hypergraph edges are allowed
to connect more than two nodes at the same time. So each edge is a subset of the
elements of the system. Notions such as connectivity can also be extended, and the
Laplacian hypergraph can also be used to extract information. It has been shown that
any hypergraph can be identified with a particular pretopology [46].

Figure 2.5: Example of an Hypergraph
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2.2 Pretopology
In this section we give the most important definitions of the pretopology theory [?, ?, ?].
We explain what is a pretopological space, and we show two different ways of conceiving
it. Throughout the whole section we mention how these different concepts could be
applied to model problems from real life.

By the end of the section we should be able to understand what is it that pretopol-
ogy can add as modeling tool, that was not already there in the previously mentioned
theories.

2.2.1 Functional Definitions

Let’s start by formally defining a pretopological space.

Definition 2.2. A pseudoclosure function a : ℘(U) → ℘(U) on a set U, is a function
such that:

• a(�) = �

• ∀A | A ⊆ U : A ⊆ a(A)

Where ℘(U) is the power set of U.

Definition 2.3. A tuple (U, a()), where U is a set of elements and a(.) is a pseudoclosure
function on U, constitutes a pretopological space.

We can see then that a pretopological space is defined by establishing a relation
between any set of elements and a bigger set. We can immediately see how this could
model situations where we are interested in studying a diffusion of information over a
group of people; the application of the pseudoclosure to a set A would give us the set of
people that was informed by A.

There is an alternative way of characterizing a pretopological space in terms of an
interior function.

Definition 2.4. An interior function i : ℘(U) → ℘(U) on a set U, is a function such
that:

• i(U) = U

• ∀A | A ⊆ U : i(A) ⊆ A

This second operator is related to the first one by a c−duality relation, i.e. ∀A | A ⊆
U : i(A) = a(Ac)c, where Ac is the complement of A. Although this second function can be
used to model some phenomena of erosion or degradation, it is mostly the pseudoclosure
function that has been used in applications. Since one can unambiguously define one in
terms of the other, we will only concentrate our efforts on the description and discussion
of the pseuclosure function.

The definition just given determines the most general pretopological space. By asking
the function to fulfill some additional conditions we get more specific pretopological
spaces:

Definition 2.5. If ∀A, B | A ⊆ U, B ⊆ U : A ⊆ B ⇒ a(A) ⊆ a(B), then we get a
pretopological space of type V . This property is called isotony.

Definition 2.6. If ∀A, B | A ⊆ U, B ⊆ U : a(A ∪ B) = a(A) ∪ a(B), then we get a
pretopological space of type VD.
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Figure 2.6: Example of a Pseudoclosure function

Definition 2.7. If ∀A | A ⊆ U : a(A) ⊆ a(A) =
⋃

x∈A a(x), then we get a pretopological
space of type VS.

Definition 2.8. If we have a pretopological space of type VD and ∀A | A ⊆ U : a(A) =
a(a(A)), then we get a topology. The pseuclosure function here is said to be idempotent.

It’s interesting to realize that all these definitions are different degrees of relaxation
of Kuratowski’s axioms for a topology. This shows that pretopology is a generalization
of the theory of Topology.

It’s clear that in a finite space, VS = VD [?]. Also, in pretopological spaces of type VD

the pseudoclosure of a set is completely defined by the pseudoclosures of its singletons.
So if the space is also finite, we could draw an edge from an element to every element
of its pseudoclosure, and the pseudoclosure would be equivalent to a particular graph.
Figure 2.7 shows the relation between the two. This demonstrates that pretopology is
also a generalization of graph theory.

Since the goal of the thesis is mostly to present the advantages of the theory of
pretopology over other theories when modeling certain types of problems, we will not
focus our attention into the particularities of VD and VS spaces.

2.2.1.1 Connectivity

Once we have a pretopological space defined, we can study which sets can be reached
by which others by iteratively applying the pseudoclosure function. The closest thing to
this in a graph is the study of connected components, but the pretopological operators
make possible to define a larger set of concepts. We will present some of them here,
while the exact equivalent of the connected components will be presented in section
Structural Equivalence 5.2.
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Figure 2.7: Pseudoclosure function on a graph.
There is a natural way of passing from a graph to a pretopological space of type VD on a finite

set, and vice versa.

Definition 2.9. Given a pretopological space (U, a(.)), any subset A of U is said to be a
closed subset of U if and only if A = a(A)

Definition 2.10. Given a pretopological space (U, i(.)), any subset A of U is said to be
an open subset of U if and only if A = i(A).

Without going into much detail, let us give a simple example of how pretopology
could be used as a modeling framework, and what would these definitions teach us.
Let us suppose again that we are using pretopology to model information diffusion over
a population of individuals, so the pseudoclosure a(A) of a set A determines how the
information spreads from A at time t, to a(A) at time t + 1. A closed set B would be a
set that doesn’t spread information anymore. An open set O, on the other hand, is a
set that will not receive the information from the exterior.

A concept related to that of closed set, that we use many times over the thesis, is
that of a closure:

Definition 2.11. Given a pretopological space (U, a(.)), we call closure of any subset A
of U, when it exists, the smallest closed subset of (U, a(.)) which contains A. The closure
of A is denoted by F(A).

The closure can also be defined as the intersection of all closed sets that contain A.
It is important to realize that the closure does not necessarily exist. When thinking

of the closure as the smallest closed set, this would mean there are two or more closed
sets containing A, without any containing the other, and without containing a smaller
closed set bigger than A. When thinking of the closure as the intersection of all closed
sets, this would mean the intersection is not closed. Table 2.1 shows an example of
a pretopological space where not every set has a closure. Indeed, the singleton {x}
is contained by the closed sets {x, y} and {x, z}, the intersection of which is again the
singleton {x}. But we know {x} is not closed, so the set does not have a closure.

The following property about closures is very important:
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Proposition 2.1. In a pretopological space of type V , every set has a closure.
The proof can be found in [?]

In a pretopological space of type V we can find the closure by repeatedly applying
the pseudoclosure operator to the set and its subsequent images until it stops expanding.
We can see an example of this in figure 2.8.

Pseudoclosures and Closures
℘(U) � {x} {y} {z} {x, y} {x, z} {y, z} U
a(.) � {x, z} {y} {z} {x, y} {x, z} U U
F(.) � __ {y} {z} {x, y} {x, z} U U

Table 2.1: Example of pseudoclosures and closures on a space U

Figure 2.8: Closure of set A

Closure of a set found by iteratively applying the pseudoclosure operator.

2.2.2 Neighborhood Duality

There is a second way of characterizing pretopologies of type V and VD. To understand
it we need to give a few more definitions first:

Definition 2.12. We say that a set F of ℘(℘(U)) is a prefilter over U, if:

∀F ∈ F , ∀H ∈ ℘(U), F ⊂ H =⇒ H ∈ F

Definition 2.13. We say that a set F of ℘(℘(U)) is a filter over U, if it’s a prefilter
stable under finite intersection, i.e.:

∀F ∈ F , ∀G ∈ F , F ∩ G ∈ F

In other words, and restricting ourselves to a finite space, a filter is the family of all
supersets of a set B, while a prefilter is the family of supersets of every member Bi of
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Figure 2.9: Filters versus Prefilters
On the left we see a filter, on the right a prefilter with basis B = {{1, 4}, {2, 4}.

a family of sets B. The family of sets B is called the basis of the prefilter. We can
see in figure 2.9 an example of a filter and a prefilter with basis B = {{1, 4}, {2, 4}.

Now, if we have a set U, and for ever x ∈ U we have a prefilter V(x) such that every
member of V(x) contains the element x, we can define a pseudoclosure function in the
following way:

∀A ⊆ U, a(A) = {x ∈ U | ∀V ∈ V(x),V ∩ A , �}

We call the prefilter V(x) the family of neighborhoods of x, and each set in the
family is called a neighborhood of x. Figure 2.10 shows a graphical representation of
this definition of the pseudoclosure.

On the other hand, if we have a pseudoclosure function a(.) in a pretopological space
of type V , the family of sets given by:

V(x) = {V ⊂ U | x ∈ i(V)}

where i(A) = a(Ac)c, is a prefilter.
The following proposition shows that we can go from one definition to the other

interchangeably:

Proposition 2.2. No two families of prefilters {V(xi) | xi ∈ U} define the same pseu-
doclosure function a(.), and no two pseudoclosure functions define the same family of
prefilters {V(xi) | xi ∈ U}.
The proof can be found in [?]

This duality is the single most important property of a pretopology when it comes to
use it as a modeling tool. Although not a clear cut division, the two ways of conceiving
a pretopological space invite to model different kinds of phenomena:

• By looking at a set, and asking what is its pseudoclosure, we tend to think about
the way a group expands, and we usually think of dynamic phenomena of propa-
gation or expansion.

• By asking to each external element if its neighborhoods intersect a set A, we are
positioning ourselves from the perspective of the external element. We are asking
every element if it belongs or not to the pseudoclosure. This process invites us
to model relations existent between an element and a group, and to conceive the
whole space as a static structuring framework.
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So in the same way that a single directed weighted network could be used to study
a dynamical problem like the flow of a liquid in a structure, and also a static problem,
like the influence of different individuals in a population; also a single pretopological
space could be used to model the dynamics of a propagation or the static structure of a
group, depending on the interpretation we give to the elements of the space.

Let us look at two simple examples of relations between an element and a group to
better grasp the utility of this second interpretation:

• Let us say we are interested in modeling the topical relation of a word to a group,
i.e. a word will be related to a group of words if they all belong to the same topic.
For example, racket could be related to the set {ball, sport}, but we may not want
it to be related to {ball, sport, basket}.

• If we are modeling the votes that a presidential ticket would get, asking to each
element if it belongs to the pseudoclosure of a pair {president, vice-president} to
model a vote for the ticket, is also a fundamental element-group relation. Indeed,
those voting for a ticket are not necessarily those voting for one or the other can-
didate, since the candidates can either strengthen each other or generate rejection.

This two examples show relations from an element to a group that are different from
the sum of the individual relations. This is what makes them so difficult to be modeled
by a graph. On the other hand, each element entertains a single relation with the group,
so multilayer networks do not seem to be apt for the task either.

Figure 2.10: Neighborhood definition of a pretopology

2.2.3 Generalizing the Neighborhoods

The way of defining the image a(A) of a pseudoclosure function a(.) from a set of neigh-
borhood families, was to ask every single neighborhood of an element x to intersect the
set A.

Now, that definition might be too restrictive when one is trying to use neighbor-
hoods to define a pseudoclosure, so some generalizations have emerged. The first of this
generalizations was to define the concept of a weak pretopology, as opposed to a strong
pretopology, which is the name now given to the original definition.

On a set U where every x ∈ U has a prefilter of neighborhoods V(x), the pseudoclo-
sure function of the weak pretopology is given by:

∀A ⊆ U, a(A) = {x ∈ U | ∃V ∈ V(x),V ∩ A , �}

So instead of asking to all neighborhoods to intersect the set, we only ask for one
neighborhood to do it.
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It is important to realize that under the weak pretopology we no longer have a unique
way of generating a family of prefilters. For example, let us consider these two families
of prefilters V1 and V2:

V1(a)= {{a, b}, {a, c}, {a, b, c}}
V1(b)= {{a, b}, {b, c}, {a, b, c}}
V1(c)= {{a, c}, {b, c}, {a, b, c}}

V2(a)= {{a, b, c}}
V2(b)= {{a, b, c}}
V2(c)= {{a, b, c}}

For both these families the weak pretopology generated is the one that has the whole
set as the pseudoclosure of every subset of the space.

This proves that we no longer can go back from the pseudoclosure to the prefilter
family. In practice, this has not really been a problem, since most of the time we are
trying to model a system, we are interested in going in the other direction.

Through the thesis we will see many more extensions to the way of building a pseu-
doclosure from the neighborhoods of a set.

2.2.4 Pretopological Operators

Now that we have seen what a pretopological space is, and how can it be used to
represent a system, let us see some additional concepts and metrics that can be defined
in it.

We will begin by studying some pretopological operators, i.e. some functions we can
apply to the subsets of the space. We have already seen two of them, the pseudoclosure
a(.) and the interior i(.); six other operators can be defined:

Definition 2.14. ∀A ∈ ℘(U), we call the rim of A, denoted b(A), the function:

b(A) = {x ∈ A | ∀B ∈ B(x), B ∩ AC , �}

Definition 2.15. ∀A ∈ ℘(U), we call the girdle of A, denoted o(A), the function:

o(A) = {x ∈ AC | ∀B ∈ B(x), B ∩ A , �}

Definition 2.16. ∀A ∈ ℘(U), we call the frontier of A, denoted f (A), the function:

f (A) = {x ∈ U | ∀B ∈ B(x), B ∩ A , � ∧ B ∩ AC , �}

Definition 2.17. ∀A ∈ ℘(U), we call the derivative of A, denoted d(A), the function:

d(A) = {x ∈ U | ∀B ∈ B(x), (B − {x}) ∩ A , �}

Definition 2.18. ∀A ∈ ℘(U), we call the coherence of A, denoted c(A), the function:

c(A) = {x ∈ A | ∀B ∈ B(x), (B − {x}) ∩ A , �}

Definition 2.19. ∀A ∈ ℘(U), we call the exterior of A, denoted e(A), the function:

e(A) = {x ∈ U | ∃B ∈ B(x), B ⊂ AC}

The utilization of these operators has mainly concerned the field of imagery [82, 22],
where the sets resulting from the different applications of the functions have served to
detect the outline or silhouette of a figure, or even to improve the resolution of an image.

The following proposition will be useful for us:
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Proposition 2.3. ∀A ∈ ℘(U), we will call the exterior of A, denoted e(A), the function:

a(A) = A ∪ d(A)
i(A) = (a(AC))C

b(A) = A − i(A) = A − (a(AC))C

o(A) = a(A) − A
f (A)= b(A) ∪ o(A)= (A − (a(AC))C) ∪ (a(A) − A)
c(A) = A ∩ d(A)
e(A) = a(A)C

We can see then that knowing the pseudoclosure gives us access to all other operators.
Only the derivative cannot be immediately formulated as a function of the pseudoclosure
and the set, but we can still express it as the following relation: d(A) = a(A) − {x ∈ A |
∃B ∈ B(x)B ∩ A = x}. In other words, we need to take from the pseudoclosure A, those
elements inside A that have the rest of a neighborhood completely outside of A.

During the rest of the thesis we will concentrate only in the pseudoclosure function.
First, because of these direct relations to the other operators, but more importantly,
because it is by far the most employed operator when using pretopology as a modeling
tool.

2.2.5 Metrics

Just as graph theory proposes some metrics of centrality that allow us to extract in-
formation from the graph representation of a system, in [91] Levorato introduced a
group generalization of degree, betweenness and closed centrality, using the concepts of
pretopology.

The first definition we will see, is that of group degree centrality:

Definition 2.20. We define the group degree centrality of a set A ∈ ℘(U) in a
pretopological space (U, a(.)), denoted CG

d
(A) as:

CG
d (A) = a(A) − A

This notion is similar but not equal to the one proposed by Everett and Borgatti
[57]for the case of a pretopology in a graph. Indeed, although both count only once each
node connected to the elements of the group, Levorato prefers not to normalize by the
maximum possible value. He estimates that the bias introduced towards bigger sets is
not justified from a modeling point of view.

Definition 2.21. We define the group betweenness centrality of a set A ∈ ℘(U) in
a pretopological space (U, a(.)), denoted CG

b
(A) as:

CG
b (A) =

U∑
x

U∑
y,x

φ(A)

φ(A) =

{
1, if ∃px,y(A)
0, otherwise

and,

∃px,y(A) = True ⇐⇒ ∃A ∈ ℘(U) | A ⊆ ak({x}) ∧ {y} ⊆ ar ({x}) ∧ k ≤ r .
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In other words, the betweenness centrality of a group A will be the count of the
number of paths between pairs of singletons that pass through A. And we will say that
a path from {x} to {y} will pass by A if the continuous applications of the pseudoclosure
operator cover the whole set A before reaching the singleton {y}. An example of this
can be seen in Figure 2.11.

One difference with the definition of Group Betweenness Centrality given in the
graph section, is that we do not need to calculate the fraction of the shortest paths that
pass through the set, since only one path is considered between the singletons. This
makes that the definition will not have the same result as the traditional betweenness
centrality, if we apply it to a singleton on a pretopological space built over a singular
graph. This metric is not a generalization then, but a fundamentally different way of
conceiving the concept.

Definition 2.22. We define the group closeness centrality of a set A ∈ ℘(U) in a
pretopological space (U, a(.)), denoted CG

c (A) as:

CG
c (A) =

∑
k

ak(A) − ak−1(A)
k

The sum is carried out until the closure is reached.

This metric will not be a generalization either.

Figure 2.11: Pretopological path

It is important to realize that these metrics are fundamentally pretopological, so
although we have been comparing the difference with previous measures of group cen-
trality on a graph, they can be applied to a much wider range of spaces.

2.2.6 Applications

The examples we have given so far have tried to show how pretopology allows to model
relations between an element and a group. Our main interest was to show its appli-
cability when the relations existing among groups of agents are not just the sum of
the individual relations. These have been examples where the relation between an ele-
ment an the group has been imposed by the model maker, because they have a natural
interpretation.

Sometimes the relation will be described as a condition the element needs to have in
relation to the group. For example, Dalud-Vincent defines in [44] a pretopological space
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over a set of authors of scientific papers, where an author belongs to the pseudoclosure
of a group if he/she was the first author of a paper and all of his/her co-authors are
inside the group.

Pretopology will be useful in other cases too, when the relation between the element
and the group emerges from a combination of multiple types of relations. For example,
in [91] Levorato studies the possible coalitions among the monks of a convent, where
different types of relations between the monks have been quantified. This way, he can
define that a monk joins a coalition if the sum of the esteem he has for the members of
the coalition is bigger than a threshold, and if the sum of the disesteem the members
feel for him is less than another threshold. This is just one example of the many possible
ways to mix binary links to get a new relation between an element and a group.

Sometimes we do not know exactly what relation we should define, but we know
some other properties of the pretopological space that we want to specify. This is the
idea behind the concept of Learning a Pretopologcal Space, introduced by [41].

Some other applications of pretopology have been in the areas of classification [7,
63, 64, 2], clustering [87, 32, 29], complex network analysis [30, 91, 111, 81, 89, 29, 31],
economic analysis [8] and image analysis [82, 22, 99].

Many of these examples are treated in detail during the thesis.

2.2.7 Conclusion

In conclusion we could say:

• Pretopology can be used to represent a system where the relation between an
element and a set is not a simple aggregation of the individual relations to the
members of the set. In this it is fundamentally different from a graph.

• Pretopology establishes one single relation between a particular element and a
particular group. In this it is different from a multilayer network.

Hopefully we will be convinced about the utility of theory as a modeling framework.
On the other hand, nothing has been said so far about its practical implementation.
Now, pretopology was born as a practical theory [?], but its functional definition is
prohibitively expensive even for small sets.

This has caused the neighborhood approach to become more popular, but the gen-
eralizations of this notion have been done in an ad-hoc manner. Each work defining its
own rules and beginning from scratch.

In the next chapter we present a unified framework that tries to change that.
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Chapter 3

Pretopology Formalization

This is the central chapter of the thesis. We present here a framework to formalize a
pretopological space other than declaring the image of the pseudoclosure function for
every subset of the space. When building the framework we had the following goals in
mind:

• Homogenize the different practical ways of building a pretopology into a single
framework that will cover them all.

• The framework should be operational. In particular, a pretopoly described using
our framework should be economically stored in a computer.

• The different algorithms should be easily translated into our framework in order
to be implemented in a computer.

The following chapters use this framework when talking about a pretopological space:
first to study the complexity of some algorithms; then to implement and apply the
pretopological concepts to some real problems.

3.1 Framework Description
In this section we present the framework that we use to describe a pretopological space,
and we justify its choice.

The need for a framework comes from the exponential growth of the subsets of a set.
If we were to use a pretopology over a set U in the way that is normally defined, the
description of the space would demand to store every single image under the pseudo-
closure function, for every possible subset of U. Now, it is well known that the number
of subsets of a set with n elements is 2n. By way of example, even for a set U with as
few as 30 elements, the number of different images to store would be bigger than the
number of bytes in a terabyte.

It is obvious then that any hope to use the concepts of pretopology out of the realm
of mathematics would need to treat the subject differently. As it was briefly mentioned
in the introduction, most of the works that have used pretopology as a conceptual
framework have chosen to work with some generalization of the neighborhood concept.
Instead of defining the image of the pseudoclosure function, we define rules to decide if
an element belongs or not to the pseudoclosure of a particular set, and we calculate the
image when it is necessary. We will see in the next section how diverse has been the
landscape of practical ways to build a pretopology.

This lack of uniformity in the kind of rules that have been used has hindered the
possibility of building in the works of others. Although concepts are shared and inherited
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from one work to the other, implementations remain in charge of the researcher and
must be done from scratch every time: this prevents the subsequent improvements of
the code and keeps researchers that are less comfortable with programming from using
the concepts of the theory.

The problem may also be theoretical; a researcher needs to demonstrate every time
from the beginning, if the rules he or she has defined give origin to a pretopolgy of type
V or VD.

A final difficulty steaming from this absence of framework is the impossibility to
deal with complexity issues. Indeed, many pretopological algorithms [44, 23, 83] take as
input a pretopological space, assuming a ready knowledge of the pseudoclosures of all
elements. A study of the complexity of the algorithm in terms of the size of the input
would not be very useful in that situation, since the input itself would become quickly
inaccessible.

The goal is then to devise a more economical way to store and treat pretopologies,
without having to get rid of its concepts.

Before presenting the framework, we remind that we are only interested in pretopolo-
gies with a finite number of elements. This should not be a problem, since our main
goal is to implement the different pretopological metrics and algorithms and use them
as a tool for applications where the elements will be discrete and finite.

Each pretopological space will be characterized by a tuple (N,Θ,DNF(.)), where:

• G = {G1(V1, E1),G2(V1, E1), ...,Gn(Vn, En)} is a set of n weighted directed graphs.

• Θ = {θ1, θ2, ..., θn} is a set of n thresholds, each associated to one graph.

• DNF(.) : (℘(U),U) → {True, False}, where ℘(U) is the power set of U, is a
boolean function expressed as a positive disjunctive normal form in terms of the n
boolean functions V1(A, x), ...,Vn(A, x), each associated to a graph, and whose truth
value depends on the set A and the element x.

And we will determine if an element x ∈ U will belong to the pseudoclosure of a set
A in the following way:

• ∀Vi(A, x), Vi(A, x) = True ⇐⇒
∑

exy ∈Gi, y∈Aw(exy) ≥ θi, where exy is the edge
going from x to y, and w(e) is the weight of the edge e.

• The element x ∈ U will belong to the pseudoclosure of A ⇐⇒ the DNF(.)
evaluates to True.

Simply put, we check for every graph if the sum of the weights of the edges going
from the element x to the elements inside A is bigger than the threshold associated to
the graph. When that happens, the boolean variable associated to that graph gets a
value of True, otherwise it gets a value of False. If DNF(.) evaluates to True with those
values for the boolean functions Vi(A, x), then the element belongs to the pseudoclosure.
We can see an example of this in figure 3.1

Sometimes we will use x ∈ ai(A) as another way of saying that Vi(A, x) = True.
We should be careful with the direction of the edges of the graph. We are summing

the edges that go from an element x to a set A. We have done this guided by the notion
of asking to an element how strong is its connection to a group before deciding to add
it. On the other hand, if we wanted to study a directed graph using a pretopology, the
direction of the arrows should be changed in order to preserve the same connectivity
notions as graph theory. This is achieved simply by transposing the adjacency matrix.

Although the framework is quite simple, we try to prove through the next sections
that it is actually very powerful.
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Figure 3.1: Example of pseudoclosure under the framework
Example of the pseudoclosure of a set A, on a pretopology defined by three graphs

G1,G2andG3, thresholds θ1 = 1.0, θ2 = 0.5 and θ3 = 2.0, and
DNF(A, x) = V1(A, x) ∨ (V2(A, x) ∧ V3(A, x)).

We first prove its generality by showing how a great number of previous uses of
pretopology as a modeling tool fit into this framework.

Secondly, we profit from the fact that the framework is based on networks, in or-
der to transform some pretopological notions into graph or integer linear programming
questions. This has multiple advantages: from a theoretical point of view, we are con-
necting the theory to two very active research programs, which can make the evolution
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of the field a lot more dynamic; from a more practical point of view, not only we can use
the techniques from those fields to answer pretopological questions without the need to
reinvent the wheel, but we can also use the multiple softwares and libraries that have
been developed in those areas.

Finally, by assigning specific data structures to a pretopology, we are able to study
the complexity of the algorithms that have been proposed so far, and to better analyze
some ways of improving them.

This whole approach could be compared to the difference between networks and
graphs. It is a pragmatic way to deal with the subject, where we will be able to sys-
tematically characterize families of pretopologies for which some algorithms can be used
with great chances of success. Indeed, some of the algorithms commonly used in network
theory may not have a good theoretical answer for every possible graph, but have been
proven to perform very well for certain families of graphs commonly found in practice
[48].

3.2 Equivalences

In a recent state of the art Bui [29] identified six practical ways of defining a pretopology.
We show here how each of these procedures can be easily transformed to fit into our
framework. Then, we take some other pretopologies defined in the literature which are
not included in the previous cases, and we show that although very specific at first sight,
they can still can be accommodated into our scheme. Finally we present a generalization
of this last idea that allow us to express any possible V-space by means of our framework.

3.2.1 Practical ways to build a pretopological space

3.2.1.1 Pretopological space built from a basis of neighborhoods

This is the original formulation, the one that was presented in the previous chapter. We
remind that each element has a prefilter basis associated to it, and it will belong to the
pseudoclosure of a set i f f all the elements of the basis intersect the set.

Since we are working in a finite space, the number of elements belonging to a par-
ticular basis set is also finite. Let us say each element xi ∈ U has ni different sets in its
prefilter basis: Bi_1, Bi_2, ..., Bi_ni .

Now let us define nmax = maxxi ∈U ni, the maximum number of different sets in the
prefilter basis of an element. We can then create nmax different graphs, where an edge
exists from xi to y in the jth graph G j , i f f y ∈ Bxi_j%ni . We should notice that the
way in in which we enumerate the elements of the basis is not important.

In other words, an element is connected to another in the jth network, if the other
element belongs to the jth set of the basis of its prefilter. If j is bigger than the number
of sets in the prefilter basis of the element, then we start over. By doing this a number
nmax of times, we are sure all sets of all basis have been covered. That last step may
seem strage; after all, one may be tempted to stop adding links if we already covered
all the elements of the basis; but this would create an isolated node on the pretopology,
since we ask the neighbors of every network to intersect the set.

If we consider all edges of all networks to have a weight equal to 1, and we associate
the threshold θ = 1 to every network, then the DNF(.) = V1(.) ∧V2(.) ∧ ... ∧Vnmax (.) will
get us an equivalent pretopology to the one defined by the prefilters.

Indeed, an element x will belong to the pseudoclosure of a set A i f f it is connected
with at least one edge on every network, and this will happen i f f there is an element of
every set of the basis inside A, which means that every neighborhood intersects the set.
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It is obvious that to get the weak pretopology, where only one element of the basis
had to intersect, we only need to switch the DNF(.) from DNF(.) = V1(.) ∧ ... ∧ Vnmax (.)

to DNF(.) = V1(.) ∨ V2(.) ∨ ... ∨ Vnmax (.).

3.2.1.2 Z2

This is just a particular case of the previous one. Here the elements of the set U are the
points (x, y) ∈ Z2, and the basis are usually sets of immediate neighbors of the point.
The pseudoclosure of A, as usual, asks for every member of the basis of an element to
intersect A, in order for the element to be part of it.

Two of the most classical examples of pretopological spaces are those defined by the
Von Neumann neighborhood (B4), and the Moore neighborhood (B8):

B4((x, y)) = {(x + 1, y), (x − 1, y), (x, y), (x, y + 1), (x, y − 1)}

B8((x, y)) = {(x + 1, y), (x + 1, y − 1), (x, y − 1), (x − 1, y − 1), (x − 1, y), (x − 1, y + 1), (x, y +
1), (x + 1, y + 1), (x, y)}

It is important not the confuse neighborhoods and basis. B4 and B8 are neighbor-
hoods, i.e. each of them is the single set that belongs to the basis of their space.

Figure 3.2: Example of a basis in Z2

Figure 3.3: Pseudoclosure of a set with the previous basis

There are two particularities that make this kind of pretopology deserve some at-
tention:

• The first one is that it has many applications in imagery, by identifying the points
with the pixels of an image [82, 22]. The different pretopological notions can then
be applied to parts of the image in order to get a better resolution or to segment
it.
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• A second one, related to our framework, is that every set has the same type of
neighborhoods, so the resulting networks are very symmetrical. We can see the
networks generated by the basis containing the Von Neumann and the rotated Von
Neumann neighborhoods in figure 3.5.

In order to completely define the pretopological space the weights of the networks’
edges, and the thresholds should all be set to 1. The DNF(.) is defined as usual with
the prefilter case, DNF(.) = V1(.) ∧ V2(.) ∧ ... ∧ Vnmax (.).

Figure 3.4: Von Neumann and rotated Von Neumann neighborhoods

Figure 3.5: Graphs obtained from the Von Neumann and rotated Von Neumann neigh-
borhoods

3.2.1.3 Pretopology in a metric space

Let us consider a set U endowed with a metric d(.), and a positive real r. By considering
the balls with center x ∈ U and radius r:

B(x, r) = {y ∈ U d(x, y) ≤ r}

we can define a pretopological space by setting {B(x, r)} as the prefilter basis of the
element x.
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We can see then that this is again a particular case of the prefilter basis definition of
a pretopology. Here we actually have a filter, since the basis have always one element.
Just as in the Z2 case, the basis are similar (not the same, of course) for every element,
so if we had our elements arranged in the form of a grid we could recover the previous
case with the Von Neumann basis for a particular value of r. We recall from the context
section that this is a pretopological space of type VD, and since we are working with a
finite number of elements it is also a type VS. VD spaces on a finite space, as we already
said, are equivalent to a network, so it is obvious that this fits into our framework.
Indeed, ∀x the number of elements that will be closer than r will be finite, and we can
always create an edge from x to them.

Figure 3.6: Examples of pseudoclosure

3.2.1.4 Pretopology in a space equipped with a neighbor function

A neighbor function is a multivalued function Γ : U → ℘(U), where Γ(x) is the set of
neighbors of the element x. We define the pseudo-closure a(.) as follows:

∀A ∈ ℘(U), a(A) = A ∪ (
⋃
x∈A

Γ(x))

Now, since we are working in a finite space, the multivalued function can be uniquely
identified with a directed graph, where an edge exists from x to y if y belongs to Γ(x).
This is actually how Claude Berge defined a graph.

To get the equivalent pseudoclosure inside our framework we will take the network
formed by inverting the direction of every edge. If we then assign a weight of 1 to every
edge, a threshold θ = 1 to the network, and the only possible DNF(.) = V1(.), we recover
the same pretopological space. In other words, we are adding to the pseudoclosure of A
every element that has at least one connection to a member of A.

This is a good example of the precautions one needs to take about the direction of the
edges. If one were to translate the procedure into natural language, one would loosely
say that when working with the multivalued function, one takes a set and calculates the
pseudoclosure by seeing how far it spreads. Our framework, on the other hand, always
takes the perspective of an external element and asks how strongly is its connection to
the set. By changing the order of the edges we are basically saying the connection of an
element to a group is strong if the group can spread to it.
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3.2.1.5 Pretopology and binary relationships

Let us consider a family (Ri), i = 1, ..., n of binary relationships on a finite set U and let
us define ∀i = 1, ..., n, ∀x ∈ U, Ri(x) = {y ∈ X}. Then, the pseudoclosure:

as(A) = {x ∈ U | ∀i = 1, ..., n, Ri(x) ∩ A , �}

is called the strong pretopology.
It is easy to see that this fits into our framework since this is exactly what we have

been doing for all previous examples, to define binary relations from the prefilter basis
set. Here we already have the networks defined by the relations, the weights and the
thresholds are again all equal to equal to 1, and the DNF(.) is again the conjunction of
all the boolean functions associated to each network.

In the same manner, we can define:

aw(A) = {x ∈ U ∃i = 1, ..., n, Ri(x) ∩ A , �}

which is called the weak pretopology.
We finish this subsection by presenting two propositions:

Proposition 3.1. U, as(.) is a pretopological space of type V ([?])

Proposition 3.2. U, aw(.) is a pretopological space of type VD ([?])

The last proposition might be particularly interesting, since as we already mentioned,
a VD space can be associated to a single graph. Indeed, if we ask for at least one
connection from an element x to the set A in order for x to belong to the pseudoclosure,
we can put all relations into one single network and study the pseudoclosure equivalently.

3.2.1.6 Pretopology and valued relationships

Figure 3.7: Examples of pseudoclosure

The last practical way to build a pretopology identified in [29] is that of a pretopology
built over a set of weighted relationships. This is introduced by defining a real valued
function ν : U ×U → R that takes each relation to a real number. The pseudo-closure
a(.) is then defined in the following way:

∀A ∈ ℘(U), a(A) = {y ∈ U − A |
∑
x∈A

ν(x, y) ≥ s} ∪ A; s ∈ R
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This is exactly the definition of our framework for the case of one graph G1 whose
weights are the values of the relations, Θ = {θ1} = {s} and DNF(.) = V1(.).

As we have shown, all previous situations can be seen as particular cases of the
neighborhood definition, where each element has a family of neighborhoods associated
to it, and we ask that either all -for the strong pretopology- or at least one of those
neighborhoods -for the weak pretopology- intersects the set. This is the first time where
there is no obvious way to conceive the problem in that manner. The best way to
understand how much general this is, it is by remembering that the strong and the weak
pretopologies are always of V − type. Now, it is easy to build an example of pretopology
over a valued relationship where that is not the case.

Let us take a graph with three nodes x, y and z, two edges (x, y) and (x, z), and
relationship values ν((x, y)) = 2 and ν((x, z)) = −2. If we build a pretopology with s = 1
then it is easy to see that x ∈ a({y}) but x < a({y, z}). So we have a situation where
A ⊂ B ∧ a(A) 1 a(B), in other words, we have pretopological space that’s not even a
V − type.

Non V − type spaces have been largely ignored in the literature, because their gener-
ality doesn’t allow them to have many properties. In particular, they cannot assure the
existence of the closure of a set, and the structural algorithms that we will see in the
next section rely on that assumption. We find this regretful, since as we mentioned in
the introduction, many real life situations can be naturally modeled with a non V − type
space. We try to overcome this difficulty in the last section of the Structure chapter.

3.2.2 Other examples found in the literature

3.2.2.1 Co-authorship pretopology

Dalud-Vincent [44] defines two pretopological spaces to characterize the structure of co-
authorship over a set of academic paper authors. In the first one, an author belongs to
the pseudoclosure of a set, if the set contains all other co-authors of at least one paper
the author has published. The second pretopology is more restrictive; an author will
belong to the pseudoclosure of a set, if the set contains all other co-authors of a paper
where he/she was the first author. These are two good examples of structures where
some information would be lost if we tried to characterize them with a single network.

Although these two pretopologies seem extremely specific at the first sight, they can
still be modeled in our framework in the following way:

• In the first case, we can define associate a network to each paper. Connections
will exist between all the authors of the paper and the rest will be isolated nodes.
The weights of each link will be equal to one, and the threshold for each network
will be equal to the number of authors minus one. The DNF(.) in this case will
be V1 ∨ V2 ∨ ... ∨ Vn, where n is the number of different networks. It’s easy to see
that the only way the belonging of an individual to the pseudoclusure of a set will
evaluate to True in a particular network, is if all of his/her co-authors in the paper
represented by that network are part of the set. The DNF(.) evaluates to True as
soon as one network does, so having the co-authors of just one paper suffices to
join the author to the pseudoclosure.

• The second case is similar, except the networks that represent each paper only
have links relating the first author to the others.

3.2.2.2 n-relations pretopology

In 1999 [23] Largeron and Bonnevay preseted an structural algorithm that will be dis-
cussed in detail in the next section, and used it in a practical case. Although the case
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treated in detail in this paper is just that of a weak pretopology, where each element
has a prefilter basis of three elements, it’s interesting to notice that at the very end
they mention the possibility of defining a pretopology over a set of binary relations, by
asking that at least three relations connect an element to the set. This is something
that doesn’t fit in the schema of prefilter basis as it was defined at the time, but it seems
that the idea of defining complex instructions was already present. Still, as far as we
know, a formalization of that same idea didn’t come until recently [41].

A generalization of that same idea can be also modeled in our framework. First we
need to transform the prefilter basis into networks just as we did before. The DNF(.)
will be the disjunction of all conjunctions of three boolean variables Vi.

3.2.2.3 Multilayer valued relationships

In [91] Levorato generalizes the valued relationship pretopology by using two valued
relationships at the same time.

Levorato uses the study presented in [115], where a dataset with multiple valued
relations of monks in a cloister is presented. He takes two of these relations, esteem
and disesteem , and studies the question ”who wants to join my group?”. For this he
defines a pseudoclosure under the assumption that people with great esteem for a team
will try to join it, but they won’t be accepted if the desesteem the group feels for them
is high. This is formalized by imposing a minimum threshold of esteem from x to A to
join, and a maximum threshold of desesteem from A to x accept. An example can be
seen in figure 3.8.

Although at first sight this might seem like a particular case of our framework with
two networks, one should be careful with the direction of the relations. Indeed one
of the criteria of the pseudoclosures concerns relations going into the group, while the
other concerns relations going out of the group. This of course can be easily fixed, as
we saw in the section about neighbor functions. We just need to invert the sens of the
arrows. We are basically changing from a graph that represents x connects to y to one
that represents y is connected by x.

Since both relations are quantified with positive values, the space generated is of
type V , and the closure of each subset is guaranteed. He author uses this and calculates
then the elementary closed sets (i.e. the closures of each singleton) in order to study
the coalitions than are formed in this manner.

As with the example mentioned in the previous subsection, although the author is
aware and makes use of the power of pretopology as a tool to deal with multi-criteria
rules, the idea of formalizing this into a unique and concrete framework is not established.

Figure 3.8: Pseudoclosure of A with α = 3, α = 1. Esteem relation is plain and disesteem
relation is dashed.
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3.2.2.4 LSP

Recent work has been done on the concept of learning a pretopology. We mention it
here for the sake of completeness but it will be treated in full detail in the last chapter
of this part of the thesis.

3.2.3 General pretopology

A similar strategy to the one used for the co-authors example can be used to generate
any possible V-type pretopology from a partial list of its pseudoclosures. For each set
A and its pseudoclosure a(A) we create a network where every element that belongs to
a(A) − A is connected to every element of A. We give weights equal to 1 to all the links,
and we associate a threshold equivalent to the number of elements on A. The DNF(.)
will be again V1 ∨ V2 ∨ ... ∨ Vn. Let’s call aF (.) the pseudoclosure obtained by applying
the strategy just described.

It’s obvious by construction that for any tuple (A, a(A)) received as input, x ∈
a(A) =⇒ x ∈ aF (A). Now, let’s suppose that we have some elements that belong
to the estimated pseudoclosure, without being in the original one:

x ∈ aF (A) ∧ x < a(A)

⇐⇒ ∃B ⊂ A | x ∈ a(B) ∧ x < a(A)

⇐⇒ ∃B ⊂ A | a(B) 1 a(A)

So as long as the list of pseudoclosures received as input is consitent with a V type
space, then for every A received as input, the estimated pseudoclosure aF (A) will be
equal to a(A).

3.3 Possible generalizations
We will end this chapter presenting some possible generalizations of pretopology that
we can obtain by relaxing some conditions on the framework:

• By replacing the networks that constitute the pretopology by random networks,
we recover the notion of stochastic pretopology as presented in [30], while keeping
the practical advantages of the framework.

• By replacing the networks that constitute the pretopology by dynamic networks,
we get the notion of a dynamic pretopology. This notion, as far as we know,
has never been used. It’s important not to confuse this notion of a dynamic
pretopology, with the fact that a normal (i.e. static) pretopology can be naturally
used to study dynamic phenomena such as diffusions or transformations.

• Identifying the minimum threshold for an element to be part of the pseudoclosure
of a set could be interpreted as a weight. The notion of a weighted pretopology is
also one that has never been used, but it seems like a natural way to quantify the
strength of the link between an element and a group.
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Chapter 4

Pretopological Metrics

In the context chapter we introduced most of the classical metrics that have been defined
on a pretopological space, and we saw that most of those that applicate to a set can be
seen as a transformation of the pseudoclosure function. A good knowledge of the image
of this function over the space is then fundamental to understand the characteristics
of that space. In this part we focus on the particular problem of finding the biggest
pseudoclosure for sets of a fixed size. Having a big pseudoclosure, as having a big degree
in the case of a graph, can be seen as a measure of centrality, and for most practical
applications as a measure of importance. All of the results that are presented here can
be trivially adapted to study the opposite problem of the smallest pseudoclosure.

The first part shows that the biggest pseudoclosure can be found using Integer Linear
Programming techniques, for certain pretopological spaces.

The second part introduces a notion that formalizes the idea of ”someone that at-
tracts people to a group when he/she makes part of it”, and presents an efficient way of
calculating it for certain spaces. This notion was used to find sets with a big pseudoclo-
sure, which we proved to be a good way of measuring centrality in [81]. Those results
are presented in section 8.2.

4.1 ILP Biggest Pseudoclosure

One advantage of the framework presented is that by working with the matrix repre-
sentation of the networks that define the pretopology, we can see the calculation of the
pseudoclosure as a system of linear equations for some particular cases. This will allow
us to treat the problem of finding the biggest pseudoclosure as an integer linear pro-
gramming (ILP [118]) problem. To our knowledge, Pretopology has never been studied
with the tools of ILP before.

Let’s begin with a pretopology built over a singular graph with n nodes, weighted
adjacency matrix W A and threshold θ, and let’s define:

c =
[

0 . . . 0n 1n−1 . . . 12·n
]

b = θ2n×1

d =
[

1 . . . 1n 0n+1 . . . 02·n
]

s =
[

s
]
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A =


wa11 . . . wa1n

∑
wa1i<0 | (wa1i) | +θ 0 . . . 0

wa21 . . . wa2n 0
∑

wa2i<0 | (wa2i) | +θ . . . 0
...

. . .
...

...
...

. . .
...

wan1 . . . wann 0 0 . . .
∑

wani<0 |(wani)| + θ


We’ll show now that solving the following ILP problem gives us the set with s

elements that has the biggest pseudoclosure on the space:

minimize cT ·x
subject to A·x ≥ b

d·x = s
xj ∈ {0, 1}, j = 1, ..., 2n

Let’s analyze the equation in order to better understand why this is the case.
We are looking for a target set ts, whose membership vector will be denoted ts, that

will have the biggest pseudoclosure among all sets with s elements. The vector x will end
up being the concatenation of ts and a(ts)C, the membership vector of the complement
of the pseudoclosure of ts. In other words, the first half of x will have zeros when an
element doesn’t belong to ts, and will have 1’s when they do. The second half will have
0’s if an element belongs to the pseudoclosure of ts and 1’s otherwise.

If we just multiplied the weighted adjacency matrix WA (i.e. the left half of the
matrix A) by ts, then (WA · ts)i, the ith component of the result, would represent the
weighted sum of the edges going from element i to the nodes in ts. Now, this sum is
exactly what needs to be bigger than the threshold θ in our framework, in order for the
element to belong to the pseudoclosure of ts.

Let call D the diagonal matrix constituted by the right half of A. Each element
Di,i is designed so it can compensate any effect that the negative edges going from an
element i to a set could have in the weighted sum. In other words, no matter which set
ts we select, as long as xn+i = 1, (A · x)i ≥ θ.

Now let’s go back to the ILP problem. A trivial feasible solution to the problem
would be to take any vector ts with s 1’s and set the whole second half of the vector x
to 1.

Since we are trying to minimize the sum of that second half, then we would like to
change the biggest possible number of 1’s into 0’s, but the only way to change xn+i = 1
to xn+i = 0 and still have a solution is if

∑n
j=1 wai j tsi ≥ θ. Simply put, we can change to

0 the components representing the elements that belong to the pseudoclosure of ts.
In conclusion, the more 0’s we have in the second half of a solution vector x the

biggest the pseudoclosure will be, since those 0’s indicate the elements that belong to
the pseudoclosure. Minimizing over all possible vectors will get us the set with the
biggest pseudoclosure of all.

Finally, we notice that it’s equation d · x = s that guarantees us that ts will have s
elements.

Now that we see how the solution to that ILP problem gives us the biggest pseu-
doclosure for a set of size s, let’s see two ways of extending this to answer some other
questions.

First, let’s suppose we want to exclude a set e of size s, represented by the vector e,
from the search space of solutions. It would be enough to add the following inequation
in order to rule the set out:

[
e 0n+1 . . . 02·n

]
< [s]
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Indeed, we would be forcing the solution to include less than s elements from set e,
and to have exactly s different elements, so the solution cannot be a vector x whose first
half equals e.

Doing this iteratively will allow us to find the n sets with the biggest pseudoclosure.
We can begin by finding the first one and then removing it from the options in the next
iteration. We then do the same and we’ll find the second biggest pseudoclosure. We
repeat the procedure n times.

The second extension is the one that allows us to apply this procedure to a pre-
topology defined by a single conjunction DNF = V1 ∧ . . .Vn. We just need to make the
following substitution:

A =


A1
...

An


Where Ai = [W Ai,Di] is the matrix corresponding to the graph Gi of the pretopology.
Integer Linear Programming is known to be NP-hard, so attacking the problem of the

biggest pseudoclosure this way won’t guarantee us a good performance in every case. On
the other hand, let us suppose we have a polynomial time algorithm to find the biggest
pseudoclosure over sets of size s. Then let us take the most basic pretopology, built over
a single unweighted and undirected graph. The greedy algorithm that starts finding the
biggest pseudoclosure over all singletons, then over all sets of size two, and continues
until it finds a set whose pseudoclosure is the whole set, would still be polynomial. Now,
solving that is equivalent to solving the minimum dominating set problem [78, 127], a
problem that is also well known to be NP-hard.

Since we now know that we are dealing with an NP-hard problem, the importance of
connecting it to ILP becomes clear. ILP is a very active research field, so it’s interesting
to be able to profit from the multitude of heuristics that are constantly developed to
solve such problems.
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4.2 Team Builder Concept
When using pretopology to model a system or a diffusion inside of a system, we are
normally interested in groups that have a large pseudoclosure. We propose here to
concentrate on the individuals that on average will increase the most the pseudoclosure
of a group.

We start by defining the function group teambuilder index (gti) as:

gti(x, A) =| a(A ∪ x) | − | a(A) |

Where | A | is the cardinality of the set A.
In other words, we calculate the pseudoclosure of a set A not containing an element

x, and then we calculate the pseudoclosure of the union of A with x, if the difference
between the two is large, then the element x made a big contribution. By doing this
over all possible sets, we are able to identify the members that on average contribute
the most to enlarging a set.

That is to say we are looking for the elements that have the largest teambuilder
index, which is defined as follows:

teambuilder(x) =
∑

A⊆U |x<A

gti(x, A) =
∑

A⊆U |x<A

| a(A ∪ x) | − | a(A) |

A naive approach to this calculation would involve a sum of as many elements as
subsets on the set U, which becomes quickly intractable. While this might be the only
way to calculate the index for any possible pretopology, we will concentrate here in the
particular case of the pretopology defined over one single graph, with all weights and
the threshold equal to one, and the only possile DNF(.) = V1

Figure 4.1: Example of the Teambuilder concept
Here the value of the teambuilder is equal to 5.

Under these circumstances the teambuilder index is given by the following formula:∑
y∈neighbors(x)

2n−neighbors(y)−1

To see why this is so, we need to change from asking ”for each set A such that x < A,
how many elements would x add to the pseudoclosure?”, to ask ”for each element z, how
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many sets A such that x < A∧ z < a(A) will have z in their pseudoclosure after joining x
(i.e. z ∈ a(A ∪ x))”.

Adding x will only add elements that are connected to x in the network, so those
are the only z’s that need to be considered. And those elements z will be added to the
pseudoclosure of all those sets of that don’t contain z in their pseudoclosure.

So the answer to the question is simply ”all those sets that don’t have z in their
pseudoclosure already”, and this for z connected to x. The way to calculate how many
those sets are, is by taking one z at a time, and calculate all those sets that don’t
include it in the pseudoclosure. Since to include z in its pseudoclosure, a set A should
contain one of its neighbors in the network, we just need to consider all the subsets of
the n − neigbors(z) − 1 elements that do not include any neighbor, nor z.

In practice we won’t need to calculate those powers of 2, since we will only be
interested in comparing the difference of teambuilder index between elements, and this
can be done by just stocking the different exponents of 2 that we are adding. So the
teambuilder index can be calculated for all x in O(E), where E is the set of edges of the
network.

Although it is a fundamentally pretopological measure, the teambuilder index is
associated to each node, and for the case of a pretopology built according to a network
it can be easily translated into a network metric. It is, to our knowledge, the only
pretopological metric that is proper to an element.

In figure 4.2 we can appreciate how the teambuilder index is a sort of compromise
between degree and betweenness centrality. Indeed, the highest teambuilder is not nec-
essarily the person with more contacts, since for a very clustered network, the addition
of that node to a group would not add many new neighbors if the group was already
connected to most of its contacts.

The teambuilder is a way of quantify the importance of an element as a mean of
attracting other elements to a coalition. We will explore in the application part if this
notion can be considered as a good measurement of node centrality.

size : teambuilder
color : betweenness centrality

size : degree
color : teambuilder

Figure 4.2: Teambuilder index versus degree and betweeness centrality
On the left we see the difference between the teambuilder index and the degree of a node. On

the right we see the difference with the betweenness centrality.
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Chapter 5

Pretopological Structures

Once we have a pretopological space structuring a set, we can do some further struc-
tural analysis by grouping elements that are homogeneous under some characteristics
of the space. This could be assimilated to the notion of finding the biggest connected
components in a graph.

Two algorithms have been presented to analyze the structure of a pretopological
space. They both work on pretopological spaces of type V since they need to be sure
of the existence of the closure of a set. We will study both of them, presenting some
improvements.

We will end the chapter presenting a generalization of the first algorithm that will
allow us to work with any kind of pretopological space. We’ll see in the last part of the
thesis that this generalization has interesting applications in the context of clusterization.

5.1 Structural Analysis

In [83, 23, 84] Largeron and Bonnevay introduced an algorithm that makes a structural
analysis of a pretopological space. The goal of this algorithm is to highlight groups of
”interdependent” elements.

Before presenting the algorithm some definitions are necessary:

Definition 5.1. An elementary closed set is the closure of a singleton {x} of U. We
will denote it Fx.

Definition 5.2. A closed set is said to be Minimal, if no other closed set is contained
in it.

We will denote Fe the family {Fx | x ∈ U} of all elementary closed sets of U.
The algorithm is designed to be used in pretopological spaces of type V , since the

following facts are used by it:

• In a V − type pretopological space every set has a closure.

• In a V − type pretopological space every minimal closed subset is necessarily in Fe.

• In a V − type pretopological space two distinct elementary closed subsets Fx and
Fy are either disjoint (Fx ∩ Fy = �) or contain a nonempty intersection such that
∀z ∈ Fx ∩ Fy, we have Fz ⊂ Fx ∩ Fy. The proof of this can be found in [?]

The algorithm is structured in three phases: first we calculate the family of elemen-
tary sets; then we explore this family selecting the minimal subsets; finally we establish
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Figure 5.1: Intersection of closures

a structural relation among all subsets. The pseudocode of the whole process, as it was
presented in the paper, can be seen in algorithm 5.1

The algorithm is presented as a way to study which elements could potentially be
reached by others, and which elements would these other be. The interpretation given to
the notion of reaching depends of course on the model maker. The notion has actually
proven to be quite flexible, having been used recently as a way to extract taxonomy
hierarchies on a conceptual corpus [41]. The pseudoclosure defined in the paper is such
that a word can expand to reach concepts that are more general than it. It has also
been used in the context of clusterization, as a way to infer some of the parameters of
the K −means algorithm that are usually set up manually by the researcher [87, 88, 32].

Algorithm 5.1 Structural Analysis
Require: A pretopological space (U, a(.))

1: procedure StructuralAnalysis((U, a()))
2: Fe ← ElementaryClosedSubsets((U, a))
3: Fm ←MinimalClosedSubset(Fe)

4: As ← ExtractStructure(Fe, Fm)

5: end procedure

Before going into the details of the modifications to the ElementaryClosedSub-
sets() function that we will make, we mention that also the ExtractStructure() pro-
cedure needs to be slightly changed, since there’s no output in the way it was presented.
The relation ”G is a descendant of F” is simply stated every time two sets having it are
found in the process of scanning all elementary closed sets. Now, it seems that the most
natural output of the procedure would be an acyclic directed graph. In the graph there
will be an arrow from a set A to a set B if and only if A ⊂ B and �C | A ⊂ C∧C ⊂ B. An
example of the hierarchy extracted through the algorithm can be found in figure 5.5, in
the section presenting the quasihierarchy concept.

Going back to the ElementaryClosedSubsets() procedure, as it can be seen in
the pseudocode, when we calculate the closure of an element we apply the pseudoclosure
repeatedly until it stops expanding. Now, this doesn’t take into account that if two or
more singletons converge to the same set at some point, there’s no need to calculate
the closure of that set every time. Since calculate the pseudoclosure is a very expensive
operation (more details at the end of the section), we present a modification of the
algorithm that tries to correct this.

The basic idea of the algorithm is to make the elementary sets grow more or less
in parallel, by applying always the pseudoclosure function to the smaller sets we have
calculated so far. By doing this, and keeping track of the different sets we get through
that process, we will need to calculate each pseudoclosure only once. The pseudocode
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6: procedure ElementaryClosedSubsets((U, a()))
7: Fe ← �

8: for all x ∈ U do
9: F ← a({x})

10: while a(F) , F do
11: F ← a(F)
12: end while
13: Fe = Fe ∪ F
14: end for
15: return Fe

16: end procedure
17:
18: procedure MinimalClosedSubsets((Fe))
19: Fm ← �

20: while Fe , � do
21: F ← Fe .pop() . We remove an element from Se and assign it to F
22: minimal = True
23: Ft = Fe

24: while (Ft , �)andminimal do
25: G← Ft .pop()
26: if GsubsetF then
27: minimal = False
28: else if F ⊂ G then
29: Fe .remove(G)
30: end if
31: end while
32: if minimal then
33: Fm.add(F)
34: end if
35: end while
36: return Fm

37: end procedure
38:
39: procedure ExtractStructure((Se, Sm))
40: Q← �
41: for all F ∈ Sm do
42: Q.enqueue(F))
43: end for
44: while Q , � do
45: F ← Q.dequeue()
46: S ← {G ∈ Se, F ⊂ andF , G} . Supersets of F
47: for all G ∈ MinimalClosedSubsets(S) do
48: if G < Q then
49: Q.enqueue(G))
50: end if
51: G is a descendant of F
52: end for
53: end while
54: end procedure
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of the new version can be found in 5.2.
Before going any further in the complexity analysis, we attract the attention to the

input of the function. We present the pseudocode of our version taking a list of sets as
input, since we will use this more general version later. Obviously, to get it to calculate
the elementary closed sets we just need to pass it the list of all singletons.

By looking at the pseudocode one could think that our algorithm has the disadvan-
tage of losing track of the closure of each particular element, but we know from the
properties of V spaces that the closure of each element will be the smallest elementary
closed set that will contain it.

Another advantage of the modified ElementaryClosedSubsets() is that it gives
us the list of closures with unique elements, so the searching space for the rest of the
algorithm could be much smaller.

5

4

3

2

1

{1} {2} {3} {4} {5}

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

{1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

{1, 2, 3, 4, 5}

Figure 5.2: Structural Analysis worst case scenario
A type of pretopology that will never have two different subsets with the same pseudoclosure.

Algorithm 5.2 ElementaryClosedSubsets new version
1: procedure ElementaryClosedSubsetsNV((U, a(.)), seedsList)
2: Fe ← [list() f or i in Size(U)] . An array of lists
3: for all seed ∈ seedsList do
4: Fe[Size(seed)].append(seed)
5: end for
6: for all i = 1→ Size(U) do
7: for all set ∈ Fe[i] do
8: pseudoclosure← Pseudoclosure(set)
9: if pseudoclosure < Fe[Size(pseudoclosure)] then

10: Fe[Size(pseudoclosure)].append(pseudoclosure)
11: end if
12: end for
13: end for
14: return Fe

15: end procedure

If we only consider the number of pseudoclosures calculated as the unit measure of
complexity, then our algorithm would have the same worst case complexity than the
original version. This is n2, where n is the number of elements in U. That is the case
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when each application of the pseudoclosure adds only one element at a time, they all
have the space U as their closure, and no two elements converge to the same set before
reaching their closure. A simple example of this situation can be seen in figure 5.2.
Circular graphs of that form, in a pretopology built over that single graph, all weights
and the threshold equal to 1, and DNF(.) = V1(.), will grow in a manner that the number
of pseudoclosures necessaries to get all elementary closed sets will always be equal to n2.

On the other hand, we could have cases where the number of pseudoclosures cal-
culated varies greatly between the two algorithms. Such situation occurs when every
singleton converges extremely quickly to some set that’s part of the growing path of
many other elements. We see a simple example of this situation in figure 5.3, where the
graphs for the cases n = 5, n = 6 and n = 7 are shown. The parameters of the pretopology
are the same as before, all weights and the threshold equal to 1, and DNF(.) = V1(.).

To better understand the difference we can look at the Hasse diagram with the
pseudoclosures for case n = 5 in 5.4. There, we can clearly appreciate that for a graph
with n elements, the number of pseudoclosures calculated for the original algorithm will
be:

n−1∑
i=1

i =
(n − 1)n

2

While the number of pseudoclosures calculated by the new version is just:

n−1∑
i=1

1 +
n−1∑
i=1

1 = 2(n − 1)

To get the closure of the first singleton we would need to apply (n−1) pseudoclosures,
while all other elements will just need one application. We pass then from a quadratic
number of calculations to a linear one.

5

4

3

2

1

6

5

4

3

2

1

7

6

5

4

3

2

1

Figure 5.3: Pretopologies with 2(n − 1) versus n(n−1)
2 pseudoclosure calculations

Here we see the first members of a family of pretopologies where the number of pseudoclosure
calculations for our algorithm is just 2(n − 1), while it is n(n−1)

2 for the original version.

Until here we have been focusing only on the number of pseudoclosures calculated,
but the situation is more complicated than that. To make things more concrete we
will briefly describe how things are implemented in the library that will be presented in
chapter 7:

• Sets are represented by the same kind of membership arrays of size n described in
the ILP section, where n is the number of elements in U.
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{1} {2} {3} {4} {5}

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

{1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

{1, 2, 3, 4, 5}

Figure 5.4: Hasse diagram of 2(n − 1) versus n(n−1)
2 pseudoclosure calculations

Hasse diagram showing the pseudoclosures needed to get the closures of each singleton. Going
from left to right, each singleton will need one pseudoclosure calculation less than it’s

predecessor.

• The pseudoclosure takes q(n2+n)+C instructions, where q is the number of different
networks and C is the constant time needed to evaluate the DNF(.). Indeed, to
see what’s the pseuclosure ai(.) of a set represented by the vector x on network i,
we just need to multiply WAi · x -where WAi is the weighted matrix of network
i-, and see which elements of the result are bigger than the threshold. This has to
be done for every network before the DNF(.) is evaluated.

• The pseudoclosures are stocked in a python set, a data structure based on a
hashtable, that allow us to know if an element is already present in amortized
O(1) (although it has complexity O(n) in the worst case).

• We need to stringify the array back and forth every time we want to stock it in a
set, or calculate its pseudoclosure, in order to make it hashable.

So every pseudocloure calculation in our algorithm will take the usual amount of
time, plus the amount of time necessary to stringify it back and forth, which is O(n),
to calculate the hash and to check if it belongs to the set, which is amortized constant.
Although this doesn’t alter the order of complexity of the pseudoclosure calculation, it
certainly adds some extra time.

In general, the advantage of the new algorithm is strictly dependent on the number
of times that a same pseudoclosure is calculated. That, in its turn, depends on a
combination of two factors: the number of times the pseudoclosure function has to be
applied before stop expanding, and the number of times two or more elements converge
to the same set. Indeed, if many elements converge to a set at some point, but that set
stop expanding quite quickly afterwards, we won’t have much gain.

The two examples presented before are extreme cases. To see how the trade-off
between a more expensive pseudoclosure and potentially less calculations works in real
life, we tested both algorithms in the six datasets used in the last chapter of the the-
sis. The algorithm doesn’t actually calculate elementary closed subsets, but elementary
closed subsets of degree 4, which a concept that will be soon introduced. The details of
this will be seen in the corresponding chapter, what’s important is just the transaction
between calculating the pseudoclosure of a set every time it appears, versus stocking it
and recover it. The results of this experiments are seen in 5.1, where we can see that
the new method was always about three times faster.

On a more general note, those datasets were geometrical points in the plane, and it
seems quite natural that elements that are close would rapidly attain a same set in the
iterative process of applying the pseudoclosure.
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dataset old version new version
mean std mean std

noisy circles 80.102 1.996 23.443 0.268
noisy moons 56.064 1.059 12.963 0.152
varied blobs 22.193 0.361 9.106 0.129
anisotronic 8.685 0.076 3.512 0.057
blobs 7.188 0.156 2.855 0.059
no structure 91.562 1.775 36.737 0.547

Table 5.1: Time performance (in seconds) of both algorithms over 20 runs, with the 6
datasets of chapter 9
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5.2 Structural Equivalence
In [47] an algorithm was presented to find the structure of social groups when we have a
network describing social relations. The paper proposed a new way of defining structural
equivalence inside of a network by iteratively extracting nodes that were at the periphery
of the network, i.e. nodes that became isolated by the removal of a single other node.
The algorithm aggregated at each iteration the nodes at the periphery in one group,
and those that when removed left others isolated in another group.

After structuring the space, the authors compared the groups found by the algo-
rithm with other characteristics of the population and found that socio-demographical
differences corresponded to network differences. The pseudocode of this algorithm can
be seen in algorithm 5.3

The paper ended up pointing out that the algorithm could be adapted to pretopolo-
gies, but without going into the details. Very recently [44] the pretopological version
was published with a pseudocode that’s the same as before, but where a few concepts
should now be interpreted as the pretopological counterparts of the originals.

The definitions necessary to understand this new version are the following:

Definition 5.3. We say that a space (U, a(.)) of type V is strongly connected ⇐⇒ ∀C ⊂
U,C , �, F(C) = U.

Definition 5.4. We say that a space (U, a(.)) of type V is connected ⇐⇒ ∀C ⊂ U,C ,
�, F(C) = U ∨ F(X − F(C)) ∩ F(C) , �.

Definition 5.5. For any A ⊂ U in a pretopological space (U, a(.) of type V , we define the
pseudoclosure induced by a(.) over A, and denoted aA(.), as: ∀C ∈ ℘(A), aA(C) = a(C)∩A.
(A, aA(.)) is called a pretopological subspace of (U, a(.))

Definition 5.6. (A, aA(.)) is a connected (resp. strongly connected) pretopological sub-
space of (U, a(.)), if and only if (A, aA(.)) as a pretopological space is connected (resp.
strongly connected).

Definition 5.7. (A, aA(.)) is a biggest connected (resp. strongly connected) subspace of
(U, a(.)), if and only if (A, aA(.)) is a connected (resp. strongly connected) subspace of
(U, a(.)) and ∀B ∈ ℘(U), A ⊂ B ∧ A , B, (B, aB(.)) is not a connected (resp. strongly
connected) subspace of (U, a(.)).

Definition 5.8. b ∈ A is an articulation point of A in (U, a(.)) if (A− {b}, aA−{b}) is not
a connected (resp. strongly connected) subspace of (U, a(.))

Definition 5.9. b ∈ A is an articulation point of degree 1 of A in (U, a(.)), if and only
if b is an articulation point, and the smallest of the biggest connected (resp. strongly
connected) subspaces of (A − {b}, aA−{b}) has cardinality 1.

Definition 5.10. c ∈ A is a weak point of A in (U, a(.)) if and only if ∃b ∈ A− {c} such
that b is an articulation point of degree 1 of A in (U, a(.)) and {c} is a biggest connected
(resp. strongly connected) subspace of (A − {b}, aA−{b}).

So we changed the graph version of connected components, the nodes in the periphery
(the weak points) and those that cause isolation when removed (the degree 1 articulation
points) for their pretopological homologues. Besides that, the new algorithm takes as
input a pretopological space instead of a graph. The rest of the algorithm remains
unchanged.

Now, when we look closely at this new version some problems start to emerge. The
first of them was already mentioned in the introduction: the algorithm takes as input a
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Algorithm 5.3 Social Groups Structure
Require: A graph G(V, E)

1: procedure SocialGroupDecomposition(G(V, E))
2: split the graph G into CC (resp. SC) . connected (strongly) components
3: cluster together all the CC singletons (resp. SC singletons)
4: consider the set of CC (resp. SC) not singleton
5: while the set of CC (resp. SC) not singleton is not empty do
6: consider one of the CC (resp. SC)
7: remove this CC (resp. SC) from the set of CC (resp. SC)
8: seek the AP, the 1 − AP and the WP of the CC (resp. SC)
9: if the number of WP > 0 then

10: cluster all these WP
11: else
12: if the number of 1 − AP already listed, not clustered and present in this

CC (resp. SC) > 0 then
13: cluster all these AP
14: else
15: cluster the remaining points of the CC (resp. SC)
16: end if
17: end if
18: consider the sub-graph resulting from the removal of the clustered vertices
19: split into CC (resp SC)
20: if the number of CC (resp. SC) singletons > 0 then
21: cluster the CC (resp. SC) singletons
22: end if
23: include every CC (resp. SC) not singleton in the set of CC (resp. SC)
24: end while
25: end procedure

pretopological space. We saw how impractical this instruction was without any further
details, but this could now be compensated with the framework proposed in this work.

Perhaps more importantly, before even begin the structural classification, we need
to decompose the space into its biggest connected (or strongly connected) subspaces.
Now, this was not a problem in the context of graph theory, since many fast algorithms
have been developed to find the components of a graph. As far as we know this is not
the case for a pretopology.

It would be interesting to notice first the amount of work that a naive approach
to the problem of regular connectivity would involve. We would need to calculate the
closure of every subset C of U, and when it doesn’t equal U, we would calculate the
pseudoclosure of the complement to see if the intersection is non empty. Not only we
are again confronted to a number of steps equal to the subsets of a set, but for every
one of those steps the expensive process of closure calculation would have to be applied.

The case of strong connectivity is certainly more manageable. If we remind the
definition of a minimal closed set, we can see that they are connected subspaces. Now,
let’s take a minimal closed set M and an element y such that y < M. We know for its
definition that a(M) = M, so the set a(M)∪ {y} won’t be a strongly connected subspace.
This show us that there can’t be a strongly connected subspace bigger than a minimal
closed set.

Since connected (and strongly connected) components are a partition of set U [?],
we can apply the algorithm presented in the former section to calculated every minimal
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closed set, take those sets out and study the resulting space again for connectivity. If
we repeat this process until no more elements are left, we end up with all the strongly
connected subspaces.

We couldn’t find any algorithm other than brute force to find the connected sub-
spaces, and the possibility of a fast algorithm to do it looks quite challenging. It should
be noticed, for example, that a connected subspace of cardinality n may exist even if
no subspaces of cardinalty n − 1 are connected. So although there’s a simple way to
test if a connected subspace A is still connected after adding a new element b (we only
need to show that a(A) = A∪∨a({b}) , {b}), any attempt to find the biggest connected
subspaces by systematically increasing the singletons without breaking connectivity is
destined to fail.
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5.3 Quasihierarchy
We have mentioned how most of the work done with pretopology has focused on V− type
spaces, since they have stronger properties than general pretopologies. In particular, the
Largeron-Bonnevay algorithm extracts an acyclic graph giving a structural analysis of
the space, using three facts about V− type spaces: every set has a closure; every minimal
closed subset is necessarily in Fe; two distinct elementary closed subsets Fx and Fy are
either disjoint (Fx ∩ Fy = �) or contain a nonempty intersection such that ∀z ∈ Fx ∩ Fy,
we have Fz ⊂ Fx ∩ Fy.

Here, we will try to extend these notions, so we can make a similar analysis in two
new cases. Before explaining what these cases are, we will introduce some definitions,
all of them to generalize the concept of elementary closed set:

Definition 5.11. We will denote Fe−n the family {FA | A ∈ ℘(U)∧ A = n} of all closures
of sets with n elements. We will call it the family of elementary closed sets of degree n.

Definition 5.12. We will denote As−n(x), the shortest set of degree n around x:
the set built by taking x; selecting the element y connected to x by the smallest weighted
edge; doing the same with y instead of x; and repeating the procedure a number n of
times. The pseudocode of this process can be seen in algorithm 5.4.

Definition 5.13. We will denote Ss−n the family {As−n(x) | x ∈ U} of all closures of
shortest sets with degree n.

Definition 5.14. We will denote Ar−n(x) the random connected set of degree n
around x, the set built by taking x, selecting a random element y connected to x, doing
the same with y instead of x, and repeating the procedure a number n of times. The
pseudocode of this process can be seen in algorithm 5.4.

Definition 5.15. We will denote Sr−n the family {Arn (x) | x ∈ U} of all closures of
random connected sets with degree n.

This excess of definitions may seem overwhelming at first sight, but they are all
guided by the same idea: start the structuring process not with elements, but with sets,
since that’s when we see the power of pretopology in action. The first definition is the
most natural generalization of the concept of elementary closed set, but it becomes too
expensive quite quickly -and most likely redundant-, as n grows. The other definitions
are heuristic methods to compensate that problem. They will allow us to begin with
small, compact sets (not in a topological sense), and see how they extend.

A final definition will be necessary before we extend the structural analysis process.
We remind that a closure is defined as the intersection of all closed sets containing a set.
We already saw that in the most general pretopological spaces the existence of the closure
is not guaranteed. On the other hand, continuous applications of the pseudoclosure to
a set and the subsequent images a(a(...a(a(A))...)) are destined to converge, since the
pseudoclosure is a monotonically increasing function and the size of the space is finite.
This allows us to make the following definition:

Definition 5.16. We call quasiclosure of a set A, the set QC(A) = ak(A) | ak+1(A) =
ak(A)

This is in practice the way we use to calculate the closure of a set in a V − type space.
Although it won’t be the closure in the general case, because we can’t be sure there’s
not another closed set C such that A ⊂ C ∧QC(A) 1 C, it still might be of interest, since
it shows us the limits of the expansion of A through the pseudoclosure.

Finally, by putting all those notions together we will be able to extend the Largeron-
Bonnovay algorithm to the following two situations:
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• When the pretopological space doesn’t comply with the isotony axiom (i.e. A ⊂
B 6=⇒ a(A) ⊂ a(B)).

• When the structural analysis won’t be over elementary closed sets, but over some
variation of the degree − n elementary closed sets.

To see what these two situations have in common, let’s think about the third prop-
erty of V − spaces mentioned before and used for the structural analysis: two distinct
elementary closed subsets Fx and Fy are either disjoint (Fx ∩ Fy = �) or contain a
nonempty intersection such that ∀z ∈ Fx ∩ Fy, we have Fz ⊂ Fx ∩ Fy. So if two sets
overlap without one being contained in the other, we know there will be a smaller set
contained in both, and the graph with the final structure will connect each of those
two sets to the smaller one. Now, this won’t necessary be the case for any of the two
situations presented: in the case of non − V spaces, nothing guarantees that an element
in the intersection won’t grow beyond it; in the case of elementary degree− n sets, none
of the starting sets might be completely contained in the intersection. This makes that
no obvious structure may emerge from the collection of quasiclosures.

To overcome this difficulty we also had to generalize the kind of hierarchy that we can
build on the set of quasiclosures. First, we needed to determine what kind of relations
we were interested in uncover, and how did we want to quantify them. The following
ideas guided our choice of algorithm:

• Two sets should be connected only if their intersection is not empty.

• The more of a set A is contained in a set B, the stronger the relation from A to B

• The bigger the set B is compared to A, the lesser the part of A that should be
contained in B to have a strong relation going from A to B. In other words, a very
big set will attract smaller ones even if their intersection is not that large.

• Two sets that have a mutual strong relation are considered equivalents, unless one
is contained in the other, in which case the biggest one is a parent of the other in
the quasihierarchy.

Having all of those ideas in mind, we developed the following algorithmic procedure,
that takes as input a degree and a threshold, and allows us to structure any kind of
pretopological space:

• We select a list of sets of cardinality degree.

• We iteratively apply the pseudoclosure to each of those sets until they stop growing.

• We quantify the relation between each pair of sets with non empty intersection.

• We say there’s a link in the quasihierarchy when the value of the relation is above
the threshold.

• Sets that have links going in both direction are considered equivalent and one is
selected randomly.

• The resulting quasiclosures with the respective links determine the quasihierarchy.

An image that shows the difference between this procedure and the structural anal-
ysis previously presented can be seen in 5.5, and the pseudocode of the algorithm is
found in 5.4. There, we also need to specify the variable type (either short or random),
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in order to choose which method should be used to selected the initial list of sets. It’s
clear that when degree = 1 and the space is of type V we will recover the structure of
the Largeron-Bonnevay algorithm (no matter which type or threshold we choose), which
justifies the fact of calling the quasihierarchy a generalization of the previous algorithm.

Algorithm 5.4 Quasihierarchy
Require: A pretopological space (U, a(.)), degree, type, threshold

1: procedure QuasistructuralAnalysis((U, a()))
2: QFe ← ElementaryQuasiclosures((U, a(.)), degree, type)
3: Adjqh ← ExtractAdjacencyQuasihierarchy(QFe)

4: Quasihierarchy ← ExtractQuasihierarchy(QFe, Adjqh, threshold)
5: end procedure
6:
7: procedure ElementaryQuasiclosures((U, a()), degree, type)
8: SeedsList ← []
9: for all x ∈ U do

10: if type = geometrical then
11: Seed ← ShortSet(x, degree)
12: else
13: Seed ← RandomConnectedSet(x, degree)
14: end if
15: SeedsList .append(Seed)
16: end for
17: QFe ← ElementaryClosedSubsetsNV(SeedsList)
18: return QFe

19: end procedure
20:
21: procedure ExtractAdjacencyQuasihierarchy((QFe))
22: Adjqh ← SquaredMatrixZeros(size(QFe))

23: for all F,G ∈ QFe do
24: F_has_G← Size(F ∩ G)/Size(G) . How much of G has F?
25: G_has_F ← Size(F ∩ G)/Size(F) . How much of F has G?
26: F_bigger_G← Size(F)/Size(G) . How much bigger is F than G?
27: G_bigger_F ← Size(G)/Size(F) . How much bigger is G than F?
28: Adjqh[Index(G), Index(F)] = G_bigger_F · G_has_F
29: Adjqh[Index(F), Index(G)] = F_bigger_G · F_has_G
30: end for
31: return Adjqh
32: end procedure
33:
34: procedure ExtractQuasihierarchy((QFe, Adjqh, threshold))
35: Adjq f [Adjq f < threshold] ← 0
36: Adjq f [Adjq f < threshold] ← 1
37: for all i, j ∈ Range(Size(U)) do
38: if Adjq f [i, j] = Adjq f [i, j] then
39: Select one randomly and erase the other
40: end if
41: end for
42: return Adjq f
43: end procedure
44:
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45: procedure ShortPath(FirstNode, degree)
46: Path← []
47: LastNode← x
48: for all i ∈ range(degree − 1) do
49: NewNode← ClosestNode(LastNode)
50: Path.append(NewNode)
51: LastNode← NewNode
52: end for
53: return Path
54: end procedure
55:
56: procedure RandomPath(FirstNode, degree)
57: Path← []
58: LastNode← x
59: for all i ∈ range(degree − 1) do
60: NewNode← RandomNeighbor(LastNode)
61: Path.append(NewNode)
62: LastNode← NewNode
63: end for
64: return Path
65: end procedure
66:

The pseudocode shows the calculation of the elementary quasiclosures as an extension
of the originnal ElementaryClosedSubsets() procedure, i.e. by taking every subset
and applying the pseudoclosure repeatedly until it stops expanding. Obviously we can
also use the new version of the algorithm that we introduced above. An example of the
difference in performance for some real datasets, with degree = 4 and type = short and
threshold = 0.5 was shown in 5.1.

We will see in the last chapter of the thesis how we can use these notions to treat
problems of clusterization.

a) Elementary Closures in a V space b) Structure of the space

c) Elementary ”Closures” in a non −V space d) Structure of the space

Figure 5.5: Structures in a space
Schematic description of the construction of the Largeron-Bonnevay and the quasihierarchy structures.
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Learning a Pretopological Space

6.1 Definition
A very interesting use of pretopology has been presented recently, where the concept of
learning a pretopological space (LPS) was introduced. There, the authors have com-
pletely switched the question, and instead of imposing a pretopology to study the infor-
mation that pretopological concepts can provide, they have assumed that a pretopology
is the natural characterization of a set, that it can be expressed as a combination of
known networks, and that the elementary closed subsets are observations we can make:
under all these assumptions, the question is now how to combine the known networks
in order to get the correct pretopology (i.e. the one that has the known elementary
closed subsets). The approach could be assimilated in spirit to the one used with so
much success on deep learning.

The first work to propose this approach was [41]. There, the authors began by
defining a parametrized pretopological space (P-Space), as a V − type space (U, a(.),w),
where the pseudoclosure a(.) is defined by

∀A ∈ ℘(U), a(A) = {x ∈ U |
∑

Nk ∈N

ωk · 1Nk (x)∩A=� > ω0}

such that (1) ω0 > 0, (2)
∑K

k=1 ωk > ω0 and (3) ∀k, ωk > 0.
K is here the number of different neighborhoods. Although the authors talk in terms

of neighborhoods, as in the prefilter basis definition, they only consider prefilter basis
with an equal number of members for every element of the set U, so in practice each
neighborhood is seen as the neighbors of the element in one particular network.

With ω0 = p and the rest of the ωk = 1, we can recognize a formalization of the
idea advanced in [23] (c.r. structural analysis 5.1), where the parameter p indicates a
requirement on the minimum number of neighborhoods that must intersect a subset A
in order to expand it.

The authors used this framework to extract a lexical taxonomy. They began by tak-
ing a corpus of documents and applied four different techniques to extract the relation
R | xRy ⇐⇒ x is more general than y out of those documents. They combined those
networks with different weights in order to get a P-Space where the structural pseu-
doclosure proposed by Largeron-Bonnevay was as similar as possible to some manually
established datasets extracted from WordNet. They used genetic algorithms with the
F − score as function of fitness for a population. Every time they created a new popu-
lation, they calculated the elementary closures and they compare them to the expected
ones in order to see how fit the population was.

A second work in the same subject was recently published [36], where some modifi-
cations were made to the previous framework. The first of those modifications was to
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change from a weighted set of networks to a DNF in terms of the networks similar to
the one we presented here. The authors proved that a DNF is both more expressive
and less redundant than the weighted version. On the one hand, the pseudoclosure
obtained by any combination of weights can be emulated by a particular DNF, but not
the other way around; on the other hand, many weights combinations are equivalent,
increasing unnecessarily the space of possible answers that needs to be explored by the
optimization algorithm.

Besides the change in framework, the paper proposes two ameliorations to the pre-
vious work. The first is to change the optimization method, from a genetic algorithm
approach to a greedy algorithm approach; the second was to change the metric used to
measure the quality of an intermediary solution, from the use of the F − score to a score
derived from the Multiple Instances Learning framework.

Multiple instance learning (MIL) is a form of weakly supervised learning where
training instances are arranged in sets, called bags, and a label is provided for the entire
bag. In other words, for a simple binary classification case, instead of having instances
individually labeled correct or wrong, we receive them in groups, and we only know if
there’s a correct instance in the group or not.

For the LPS case, the positive bags are sets of all the possible pseudoclosures that
are consistent with a particular closure. The idea behind this is that the previous work
only considered the information delivered by the final step of the expansion (i.e. the
closure), while this approach allows to privilege pseudoclosures that are more likely than
others, even when having the same final closure.

The complexity of the new algorithm is presented in terms of the number of times
the whole structural process has to be calculated, and its equal to O(max_iter · | V |
·beam_size). Now, as we saw in the section dedicated to the Largeron-Bonnovay algo-
rithm, even one structural analysis might be extremely slow in some cases, let alone a
multitude of them. We will present in the third section of this chapter a new algorithm
that gives an exact answer to the problem (when it exists) in a fraction of the time of
a single structural analysis calculation.

6.2 Difference with our framework

Before presenting our algorithm to solve the LPS problem, we would like to talk about
the differences between the P-Space as presented in the cited papers and our framework,
since they might look similar at first sight.

Although both frameworks use the notion of a DNF(.) (our choice was directly
motivated by their work), the concept of P-Space is still too closely related to the
notion of neighborhoods, and in consequence is still very rigid.

Without going into the details again (c.r. section Equivalences: subsection Multilayer
valued relationships), we know that our framework is capable of generating non V − type
pretopological spaces, something that might become very useful when mixed with the
quasihierarchy concept.

Another simple way to see how our framework is more flexible, is by noticing that
although we still use a positive DNF(.), it’s easy to simulate negation by inverting the
signs of a network Gi and its threshold θi. Indeed, to ask for an element x that it
doesn’t belong to the pseudoclosure of A in network Gi is to say that the sum of the
edges going from x to A is less than θi. This is the same as asking that the sum of the
additive inverses of the weights are bigger than −θi, which is to ask x to belong to the
pseudoclosure of −Gi with −θi as threshold.

It’s important to realize our framework is not just a pragmatic numerical device, but
has a natural interpretation. When the idea of the parametrized pretopological space
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was introduced, the weights assigned to each network were interpreted as a quantification
of the credibility that one was giving to the network. When considering not only if the
neighbors of an element intersect a set, but also the strength of the intersection, we
are giving a network the possibility to be more credible in some zones than others. A
network can be more credible than other, but if the other manifests a really strong desire
to join an element to the pseudoclosure, attention should be paid. Credibility becomes
then a local issue, but the interpretation remains valid.

As the reader might have appreciated, our framework is nothing but a mixture of the
two most general frameworks presented so far: the multilayer valued relations introduced
in [91], and the parametrized pretopological space introduced in [36]. Putting the two
together though, allows us to create pretopologies that none of them could generate on
their own.

6.3 Biggest Smaller Pseudoclosure Algorithm
We will finish this part of the thesis presenting an algorithm that will allow us to estimate
a DNF(.) with the exact same closures we are trying to reproduce, when that DNF(.)
exists.

The idea is the following: let’s suppose an element x is external to the closure C, but
belongs to a(C) on graphs G1 and G2 (i.e. the sum of its connections to C in G1 is bigger
than θ1, and the sum of its connections to C in G2 is bigger than θ2)). Then, having
both V1(.) and V2(.) equal to True is not sufficient to propagate, so the conjunction
V1(.) ∧ V2(.) is not part of the DNF(.) that defines the pretopology.

If we were to apply that procedure with every closure Ci we are trying to reproduce,
and every element external to Ci, we will end up with the set of all conjunctions that
we are sure are not part of the DNF(.), we will call this set the forbidden conjunctions.

The next thing to realize is that if a conjunction ∧iinIVi(.) is part of the forbidden
conjunctions, then any conjunction that includes a subset of those boolean functions
can’t be a part of the DNF(.) either. For example, if V1(.)∧V2(.)∧V3(.) doesn’t propagate
when equal to True, then certainly V1(.) ∧ V2(.) is not enough to propagate either. The
Hasse diagram of the sets of boolean functions used in each conjunction can be seen in
6.3.

Once we have figured out which conjunctions are not part of the DNF(.), we could
take the disjunction of all the other conjunctions as the estimated DNF(.), and we
would definitely get the closures we were trying to retrive if a solution really exists.
The reason is that we would be expanding as far as possible without ever crossing
the boundaries established by the closures. But a lot of those conjunctions would be
unnecessary. Indeed, the case is the opposite than before, if we already have a set
of boolean variables in a conjunction, another conjunction that includes a superset of
those variables would be redundant, since it will be True only if the first one is True.
In conclusion, theres’s no need to include a superset of a conjunction that we already
included.

The pseudocode of the algorithm that uses those two ideas, in order to retrieve the
shortest (in terms of number of conjunctions) DNF(.) that will expand every set as far
as possible, without transpassing the closures, is given in 6.3.
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1: procedure BiggestSmallerClousure((U, a(.)), closures_set)
2: f orbidden_con junctions← ExtractForbiddenConjunctions((U, a(.)), closuresset)
3: DNF ← ExtractDNF( f orbidden_con jonctions)
4: end procedure
5:
6: procedure ExtractForbiddenConjunctions((U, a()), closures_set)
7: for all C ∈ closureset do
8: f orbidden_con junctions← list()
9: for all x ∈ closure_neighbors do . external elements connected to the

closure
10: con junction← list()
11: for all Gi ∈ (U, a(.)) do
12: if Vi(A, x) = True then
13: conjunction.append(Vi)

14: end if
15: end for
16: f orbidden_con junctions.append(con junction)
17: end for
18: end for
19: return f orbidden_con junctions
20: end procedure
21:
22: procedure ExtractDNF( f orbidden_con junctions)
23: dn f ← list()
24: for all con junction do . Every possible conjunction, seen as a set of Vi’s
25: con junction← list()
26: for all f orbidden ∈ f orbidden_con junctions) do
27: if con junction ⊂ f orbidden then
28: next con jonction
29: end if
30: end for
31: for all included ∈ dn f ) do
32: if included ⊂ con junction then
33: next con junction
34: end if
35: end for
36: dn f .append(con junction)
37: end for
38: return dn f
39: end procedure
40:
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N0 N1 N2 N3

N0 ∧ N1 N0 ∧ N2 N3 ∧ N0 N2 ∧ N1 N3 ∧ N1 N3 ∧ N2

N0 ∧ N2 ∧ N1 N3 ∧ N0 ∧ N1 N3 ∧ N0 ∧ N2 N3 ∧ N2 ∧ N1

N0 ∧ N2 ∧ N3 ∧ N1

Figure 6.1: Biggest smaller pseudoclosure algorithm.
Example for the case where neither N1 ∧ N2 nor N3 propagate. When in red, it disqualifies the
children, also in red; when in green, it disqualifies the parents, in blue. We only keep the green

ones.

JULIO LABORDE 67



6.3. BIGGEST SMALLER PSEUDOCLOSURE ALGORITHM

68 JULIO LABORDE



Part III

Applications

69





Chapter 7

Python Library

As it was mentioned in the introduction, although many works use the concepts of
pretopology, their implementation is rarely discussed, and it’s usually made from scratch
and in an ad-hoc manner. Lamure [82], for example, describes his implementation in
great detail, but it’s very specific to the case of image processing.

A first attempt to undertake this problem was done in 2010 with the creation of a
JAVA library called pretopolib [92]. Although the library had many interesting features,
it seems to be discontinued, and it didn’t reach much popularity.

Besides those practical considerations, two main reasons pushed us to start the task
from the beginning. The first one is pragmatical; although JAVA is faster, and still
quite popular in production, Python has without a doubt become the de-facto language
for the study of complex systems and machine learning. It is extremely easy to use, so
many researchers that are not computer scientists and are only interested in studying a
particular problem, begin by learning python. The size and dynamism of the community
is enormous, and the number of available packages is extremely large and keeps growing.

The second motivation is more theoretical. Pretopolib was mostly built around the
notion of a set, with the JAVA implementation of it. The implementation was based
on hashtables to store the information, which allowed to answer questions about the
membership of an element to a pseudoclosure in amortized constant time. A lot of
care was put into the proper choice of data structures to deal with different kinds of
pretopologies, but they all were related to sets. It is true that under that conception of
the space, every pretopology could be modeled, but the way of dealing with the issue
was so general that there was little place for optimization.

Most of the efforts were put into optimizing data structures so they could retrieve
the pseudoclures of sets that had already been calculated. This seems like a strange
choice to us, since even if we were able to store all the pseudoclosures calculated (which
is impossible even for relatively small sets); the amount of time necessary to calculate
them in the first place would be too large.

In order to avoid this problem, the author of the library also proposed a ”dynamic
pseudoclosure”, one that was calculated from a set of multiple relations only at the time
of being used. This was similar in spirit to what we are proposing here, but although
the space could store many relations, the pseudoclosures seemed to be defined only for
one relation at a time and there was no discussion about how to mixed them up.

All these considerations motivated us to create a new pretopological library made in
Python and conceived from the beginning to deal with pretopologies described as our
framework proposes. The library was named pretologyx, because of the heavy use that
it makes of the networkx library.

In the next section we will present the different modules of the library in a gen-
eral manner, in order to get an idea of how they are supposed to interact with one
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another, and what are the tasks that can be accomplished. We will also describe some
implementation choices.

In the appendices we will find more details about the different functions and the
arguments that they take.

7.1 Modules

Figure 7.1: Library Structure

We will start by explaining some basic features that are common to all modules. In
particular, most of the heavy calculations use NumPy, which is the fundamental package
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for scientific computing with Python.
A set in our library will always be represented by a NumPy array the size of the space,

with ones representing membership, and zeros otherwise. This specification is certainly
sub-optimal from a memory space point of view. Still, the increase in performance,
compared to any Python implementation involving loops, is so big that the exchange is
well worth it. Indeed, due to its flexibility Python can be an extremely slow language.
The language is not typed, and lists can be created with any kind of different objects
inside. A loop in Python will therefore create a series of dummy variables, and will have
to test a number of things on the elements of the list before performing any operation
on them. NumPy arrays, on the other hand, will contain values of the same type, and
they all will be placed consecutively in the memory. Operations on that array will be
executed directly in C instead of the Python level for loops.

The same idea motivated our choice for network representation: each network will
be described by its weighted adjacency matrix. Besides the advantage in performance,
this allows to work with sets and networks using the same type of representation. The
importance of this cannot be overstated: the fact that our framework uses networks
to describe a pretopology, which is a set theoretical notion, makes it is necessary to
switch back and forth constantly between those two notions. Being able to use the same
mathematical object to describe them both, greatly facilitates the task.

The pseudoclosure operator, for example, which is the most important notion of the
theory, becomes a simple multiplication of the adjacency matrix by the membership
vector, and a comparison of the resulting vector with the threshold.

Multiple network pretopologies involve the same process multiple times, one for the
pseudoclosure of each network. Then, we need to make some element-wise multiplica-
tions or sums of the resulting vectors, in order to get their intersection or union and
evaluate the DNF(.). All of these operations are done extremely fast by NumPy.

Now that we know how do we represent the basic notions in the library, we can
describe the different modules. An image of the whole structure of the library is shown
in figure 7.1.

7.1.1 Space

7.1.1.1 Prenetworks

The library uses the concept of a Prenetwork, which is characterized by one network
(in the form of its weighted adjacency matrix) and a list of tuples (threshold,weight)
associated to it. A Prenetwork with adjacency matrix A and list of tuples [(1, 1),(2,
1),(1,2)], is equivalent to three networks with adjacency matrices A, A and 2A, and
thresholds θ1 = 1, θ2 = 2 and θ3 = 1. This not only allows us to store multiple networks
saving a lot of space, but also the pseudoclosure can be calculated much faster. Indeed,
the matrix multiplication will be done only once, and the resulting vector is the one that
will be multiplied by the different weights and compared to the different thresholds.

The need to specify pretopologies defined over multiple networks in that manner,
was motivated by the LPS problem. We already showed how to learn a pretopological
space over a specific set of networks previously defined. For some problems though, we
might not know which are the networks defining the space, or what thresholds should be
associated to them. The concept of Prenetwork should allow us to test multiple different
options, and let the learning process find out which are the right parameters.
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7.1.1.2 Pretopological Spaces

A pretopological space is represented by the PretopologicalSpace class. The way of
storing the space is that proposed by our framework in section three 3.1, so we need to
save a set of networks with thresholds associated to them, and a DNF(.). The networks
and their thresholds are stored in the form of Prenetwork objects, while the DNF(.)
will be saved as a list of lists, with each inner list containing the indices of the networks
that form a single conjunction.

Since we are interested in establishing pretopology as a way to study complex sys-
tems, and we believe -as we will argue in the next section-, that agent-based models are
a great laboratory to reproduce those systems, we have tried to facilitate the communi-
cation between pretopology and agent-based models. We have concentrated our efforts
in designing an easy to build relation between agent populations and pretopological
spaces. For this, the populations should be described as a 2D array where each row is
an agent and each column is an attribute.

This population is seen as an environment over which a pretopological space will
be built. Two specifications of the class PretopologicalSpace were designed, each
inheriting (in an Object Oriented sense) from the previous one.

• The most general of those two is the class PretopologicalSpaceEnv, which
includes a population attribute besides those that a general PretopologicalSpace
has. The idea is to facilitate the creation of networks where links between agents
depend on their attributes, and then use those networks to define a pretopological
space.
The types of networks that can be built using population attributes are described
in the Network module.
This type of space was used in the application target selection 8.2

• The other specification is the PretopologicalSpaceGrid, which inherits from
PretopologicalSpaceEnv. The particularity of this space is that the population
can be arranged in the form of a grid. The agents of the population are perceived
as the cells of the grid, and the kind of neighborhoods that we can define are those
presented in 3.2.1.2
This type of space includes a method to draw the grid, with the color of each cell
dependent on some attribute of the population.
This type of space was used in the application learning propagation 8.3

7.1.2 Structure

The library implements the different structural algorithms that were discussed during
the thesis. The methods receive a PretopologicalSpace and calculate:

• The elementary closed sets using the Largeron-Bonnovay method 5.1.

• The elementary closed sets using our new method 5.1.

• The degree n generalization of those methods. 5.1.

• The structural analysis using any of the previous methods. 5.1.

• The strongly connected version of equivalence structure. 5.2.

• The quasiclosures of a space. 5.3.

• The quasihierarchy of a space. 5.3.
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7.1.3 LPS

The library implements the biggest smaller pseudoclosure method to learn a pretopo-
logical space that was described in section 6 6. The method receives a Pretopologi-
calSpace and a list of sets (the closures) as input, and estimates the DNF(.) that will
make the closures of the PretopologicalSpace best approximate the closures given as
input.

7.1.4 IO

Two modules are in charge of building or storing pretopologies. One from files, one
during execution. The first one is the IO module, the second is the Network module.

7.1.4.1 Graph inputs

The IO module allows to easily transfer a pretopology between computers by saving it
in a particular format. More importantly though, is that it helps us build pretopolog-
ical spaces from files with real networks. This is another advantage of working with
networks. The library networkx has a great many methods to read networks from ex-
ternal files. If we put those network files in a single folder, and we include two other
files threshold_weights and dnf, the library is able to build a pretopological space from
that folder. The threshold_weights file describes the different lists of (threshold,weight)
tuples associated to each network file. The dnf file is a list of lists, each of the inner
lists enumerates the indices of the networks belonging to a same conjunction.

7.1.4.2 Other inputs

Besides the files describing a graph that are supported by networkx, the networks that
constitute the pretopology can be described by:

• The adjacency matrix of the graph stored as a an .npy file. This is the format
used by NumPy to store arrays.

• A file with a list of tuples (set, pseudoclosure). Both sets and pseudoclosures will
be described by the list of indices of the elements. The method to build the
pretopology is described in 3.2.3

• A file with a list of lists describing the prefilter basis. Each inner list will have
the indices of the elements belonging to a neighborhood. The method to build the
pretopology is described in 3.2.1.1

7.1.5 Network

This modulo allows to build networks that are used to define a pretopological space. The
same as the IO module, networks can be built either using Networkx, or the following
three additional methods that work for PrestopologicalSpaceEnv objects:

• Geometrical: we specify a threshold and an attribute, and every pair of agents
whose euclidean distance for that attribute is smaller than the threshold are con-
nected.

• Homophilic: we specify an homophily_level and an attribute, and we connect
agents according to the algorithm described in 8.1.
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• Contradictory: we specify an existent network and a network creation method,
and a new network is created using that method but preventing any links between
nodes connected in the input network. This allows the creation of networks of
friends and enemies, for example.
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Diffusion

This chapter uses pretopology to address two problems related to diffusion phenomena.
Each problem uses the theory in a different form: the first as a way to structure a space
and uncover central groups; the second as a way of modeling a dynamic process.

The first problem is that of selecting a group of elements that will maximize the
spread. To put things in a more concrete form: if we are studying the diffusion of a new
opinion inside a population, the problem consists in finding the group of people that
will spread the most this new opinion over time. We use some pretopological metrics
to select the initial set of people, and we compare their performance with some other
classic selection strategies.

The second problem uses pretopology to model the diffusion of a fire in a forest. Each
application of the pseudoclosure function gives the set of burnt zones in a new time step.
The problem is that of learning the pseudoclosure that models the fire diffusion, given
some areas that do not spread the fire. We use the exact same settings used by the
paper that introduced the problem, and we test the results we presented in chapter six
to see if they perform according to our predictions.

Both problems use agent-base models as a simulation tool, so we begging by describ-
ing what they are. We then give the details and results of the target selection problem,
and we finish with the details of the LPS problem.

8.1 Agent-based Models
Agent-based models are computational models mostly used for the study of complex
systems by the use of multiple simulations [67, 54, 95]. The models consist of a set of
virtual entities called agents that evolve and interact inside an environment.

An agent is a virtual object that usually represents an entity from the real world
(e.g. a person, an animal, a car, etc...). They might be defined by the following three
sets:

• A set of attributes: characteristics of the agent that do not change during the
simulation (e.g. the gender of a person).

• A set of variables: characteristics of the agent that evolve over time (e.g. the
position of a person in its environment).

• A set of functions: descriptions of the actions that the agent must execute when
certain triggering conditions are fulfilled. These actions might trigger some other
actions or could change some variables’ values.

Object Oriented Programming is therefor a very suitable paradigm for the design of
agent based-models.
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Sometimes agents are also described as having relations, but we consider these as a
particular attribute or variable. It is an attribute when the connections are fixed over
time, and a variable when the set of related agents emerges from the way the agent
evolves in the environment.

We should not confuse agent-based models with multi-agent systems. The former
are virtual systems where we program the behavior of the individual components to
study what emerges globally, and the later are real physical systems of independent
asynchronous components designed to carry out a task [51].

Although the line is somewhat fuzzy sometimes, we could say that agent-based mod-
els are divided into two categories according to their degree of realism and their moti-
vation.

8.1.1 Realistic

Some of the models are extremely realistic: they have several different kinds of entities
interacting in very sophisticated ways, attributes and variables are instantiated with
real data, and their description may take hundreds of pages. These models are usually
employed to help in public policy decision making in areas such as epidemics or trans-
portation, or as a way to treat problems in operational research that would be hard to
model otherwise.[14, 112, 72, 128, 18, 13, 43]

The origin of this kind of models is sometimes traced back to [106], under the name of
microsimulation. Orcutt presented a model of a socio-economic system where individual
units received inputs, treated them according to some probabilistic rules and generated
outputs that were used by other units in the next time step.

From an historical point of view it might be interesting to realize that Von Neumann,
who was fundamental in the development of game theory, was also fundamental in the
development of computers. According to his daughter, Von Neumann thought game
theory would be a much more popular tool for the study of social systems, and he was
well aware of the limits of mathematical analysis to treat the problems of the theory. He
is also known to have had the use of computers in game theory problems as an eventual
goal, so it doesn’t seem too far fetched to say he had some sort of agent-based model in
mind.[75]

One important characteristic of agent based models is the natural way they have of
mapping reality. Indeed, they describe the world very much as we conceive it in our
daily lives [10, 9] the models are usually made up of agents that represent individuals
who realize actions when meeting certain conditions; this is quite similar to the way
natural language deals with the people and objects that surround us.

So even if agent-based models are perfectly formal, and their subtleties might escape
some people, most of their content can be easily grasp by a person with no formal
training. Compare this, for example, to the very technical and abstract vocabulary that
is necessary for the comprehension of some dynamical system models of social behavior,
not to mention physical models. This characteristic is quite important when the models
are supposed to be used by a series of people coming from very different backgrounds.

8.1.2 Toy models

A second type of model, are those usually called toy models. These are much simpler in
their premises, closer to particle physics models where we cannot get analytical results.
In most of these cases the interest is not so much in the particularities of a singular
initial configuration, but in the relation between the different individual behaviors and
the resulting global patterns. Since these models are usually quite simple, they allow
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to make multiple simulations, with many sets of parameters, without using to many
computational resources [97, 70, 124, 132, 114, 73].

The whole process is similar in spirit to the dynamic networks that we saw in the
context section. The definition of individual behavior allows us to study the mechanisms
that give origin to macro phenomena. It is only the type and the complexity of behavior
that changes.

Toy models are interesting because the computer stops being a tool to solve problems
whose solutions we could get otherwise if we had the time and manpower, and becomes
a real laboratory for experimentation. Perhaps the most emblematic example of this is
still Stephen Wolfgram, who shut himself away from the physical community to spend
years exploring the different evolutions of one dimensional cellular automata. The results
came out in the form of a thousand pages long book [134], and although it might not
be as groundbreaking as he presents it, it is certainly unique in its genre. Even though
the book is presented as a book on cellular automata, it is quite different from others
on the subject, where formal languages, fractals and other mathematical tools are used
in order to study analytically the evolution of the automata [74]; here, it is computer
experimentation that is at the center of the book.

It is usual in these kind of agent-based models to talk about emergent phenomena,
so we should say a few words about this concept.

8.1.3 Emergence

Although a few formal ways of defining Emergence have been proposed (information
theory, formal languages), none of them has been able to impose itself as the proper
one. The concept is usually defined in a loosely fashion as ”The sum is more than it’s
parts” [102]. We believe this definition leads to confusion: it seems to convey some
mystical connotations, and distorts the real potential of a model. If we put a million
wooden pieces in the form of a circle, the whole would have a radius, while none of the
units would, but there is nothing complex about the phenomenon and few people would
call this emergence.

Here we have in mind what Chalmers calls weak emergence [40]. Strong emergence
is when something fundamentally different in nature happens at the macro level. Weak
emergence, on the other hand, is when the macro level exhibits a behavior that is at
once comprehensible and very hard to predict.

The Conway’s game of life is still one of the best ways to illustrate what we mean.
Here we begin with a grid with black and white squares, and the color of each square
changes in discrete time steps according to some simple rules about their Moore’s neigh-
borhood 3.2.1.2. Although the model is quite simple, extremely complex patterns emerge
at the macro level: some of them seem to glide through the grid over time, and if dis-
posed in a proper fashion are capable of reproducing the calculations of any Turing
machine. It is obvious in this case that there is nothing at the macro level that was not
already on the components, if we consider the rules of interaction as something proper
to the component.

This difference may seem like a subtlety of little practical importance, but it has as
consequence that the invention of new concepts can lead to new phenomena rendered
intelligible, which in turn signifies a better understanding of the emergence from micro
to macro. Now, the structural concepts we use are constrained by the structural frame-
work chosen to represent the system. When we realize this, the role of the structural
framework takes a whole new level of importance.

Going back to the network parallel, the emergence of a power law degree distribution
or the small-world property are only evident once we have decided to use networks as a
way to characterize the system.
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The glider effect is a classical example of an emergent phenomena.

This is why when conceiving pretopologyx we were interested in facilitating the
relation between agent-based models and pretopology.
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8.2 Targets Selection
Problems related to diffusion are everyday more present in our lives (epidemics, misin-
formation spreading, computer viruses, etc...). To confront these problems the strategy
has been to identify the individuals that are more central in the system in order for
them to stop or accelerate the diffusion process. But that begs the question of what is
to be central in a complex system. This question is strictly conditioned to the way the
system structure is characterized, and the traditional way to deal with this has been by
the use of networks [70, 132, 38, 73].

Here, we present the results that we published in [81]. We see that the notion of
teambuilder helps us develop a greedy algorithm that has very good results finding the
centralthe biggest pseudoclosure or the index are appropriate ways of identifying super-
spreaders. The relevance of these metrics will be tested by the use of some standard
agent-based models of epidemics and opinion dynamics. Finally, a pretopological model
of opinion diffusion will also be proposed and studied.

8.2.1 Diffusion Simulations

We will now introduce the different models that will be used to test how well the pre-
topology captures the idea of an agent being central in a process of diffusion. Al-
though these models are presented as opinion dynamic models, they are so general
that have been used as models of epidemics, segregation and other diffusion phenomena
[66, 117, 19, 129]. The models are the following:

• A Cascade model: where at each time step, every agent that changed opinions in
the previous step will try to convince each of its neighbors to also change opinion.
The process of convincing is modeled by a Bernoulli trial with probability equal
to the influence that the agent has over its neighbor.

• A Threshold model: where at each time step an agent will change opinion if the
fraction of its neighbors that has the opposite opinion is superior to a certain
threshold.

• A Utility-based model [73] where an agent will change opinion if the utility of
changing is superior to zero. This will depend on two parameters, its motivation
to change, and its conformity to accept the opinion of the others.

The pseudocode for each of these models, as well as for the whole methodology can
be found in 8.1. The methodology consists in building a population, create a network
on that population, select a target group that will have a different opinion than the rest,
and execute an opinion dynamic model.

The creation of the network is done according to the same procedure used in [73].
This procedure allows to control for the degree of clustering of the network through
a parameter called homophily_level, which at the same time captures the idea that
people are usually connected to people that are similar to them[100].

The algorithm adds one edge at a time by selecting a random agent, and randomly
deciding (with homophily_level probability) if the agent is connected to its most similar
agent, or to an agent selected randomly. The pseudocode of this procedure can also be
seen in 8.1.

For each value of the parameter homophily_level different networks are created (pa-
rameter number_networks); for each network, all selection strategies are performed; if
the selection strategy for the targets is not deterministic, we select a target group and ex-
ecute the opinion dynamic models multiple times (parameter number_selections). The
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results are stored and averaged over all networks that used the same homophily_level,
and over all the selections for the non-deterministic strategies.

It’s important to notice that only in the Utility-based model the homophily_level is
really modeling the concept of homophily. Indeed, the algorithm for network creation is
using the motivation of each agent as their similarity attribute (c.r. bellow), but none of
the other models use that variable. So for those other two models the homophily_level
will only control the structural clustering of the network.

Each simulation starts with the targets having opinion 1 and the rest of the popula-
tion having opinion 0.

The parameters for the whole process are the following:

• population_size = 1000
• average_neighbors = 10
• number_networks = 15
• number_selections = 15
• homophily_levels = [0, 0.2, 0.4, 0.6, 0.8, 1.0]
• targets_size = 50

And the selection strategies are:

• Largest motivation
• Smallest motivation
• Largest teambuilder index
• Smallest teambuilder index
• gti heuristic: we test an heuristic for selecting a large pseudoclosure by selecting

a random node x1, and then selecting the node x2 that maximizes gti(x, {x1}).
Subsequently we add the node x3 that maximizes gti(x, {x1, x2}). The process
continues until we have selected the number of targets necessary.

• Largest eigenvector centrality
• Largest pagerank centrality
• Random pseudoclosure: we take many random sets of targets, we measure the size

of the their pseudoclosures, and we select the one with the largest one. The number
of random sets selected was fixed to 500 in our simulations; the motivation being
to spend around three times the amount of time spent with the gti() heuristic.

• Largest betweenness centrality
• Largest closeness centrality

8.2.2 Analysis

8.2.2.1 Individual network models

The first thing we notice is that the more clustering we have, the more different the
metrics are among them, with most of them performing in a very similar manner when
the network is completely random, but degreecentrality, pagerank and gti standing out
as the homophily level increases, and gti working systematically better for the cascade
and threshold model.
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Algorithm 8.1 Diffusion Simulation
1: procedure methodology((parameters))
2: agents← createAgents(population_size)
3: for all hl ∈ homophily_levels do
4: for i ← 1 to number_populations do
5: network ← homophilicNetwork(agents, attribute, hl)
6: prenetwork ← Prenetwork(network, threshold = 1)
7: pre_space← PretopologicalSpaceEnv(prenetwork, dn f = [0])
8: for all target_strategy ∈ targetstrategies do
9: targets← select_targets(target_strategy)

10: results_cascade← cascade_diffusion(pre_space)
11: results_threshold ← threshold_diffusion(pre_space)
12: results_utility ← cascade_diffusion(pre_space)
13: end for
14: end for
15: end for
16: end procedure
17:
18: procedure createAgents(populationsize)
19: for i ← 1 to population_size do
20: agenti .motivation← random(−1, 1) . used by the utility model
21: agenti .con f ormity ← random(0, 1) . used by the utility model
22: agenti .threshold ← random(0, 1) . used by the threshold model
23: end for
24: end procedure
25:
26: procedure homophilicNetwork((attribute, hl))
27: for i ← 1 to average_neighbors ∗ population_size do
28: n1 ← randomNode()
29: rand ← random(0, 1)
30: if rand < hl then
31: n2 ← closestNode(n1, attribute) . closest agent w/r attribute value
32: else
33: n2 ← randomNode()
34: end if
35: edge← addEdge(n1, n2)
36: edge.in f luence← random(0, 0.02) . Each edge has an influence
37: end for
38: end procedure
39:

When interpreting this result in the context of a social system and a marketing
strategy, for example, it becomes interesting to realize that the degree of an agent in
the world (e.g. how much ”followers” he/she has) usually correlates to a bigger price or
effort to convince him/her to adopt a new strategy.

In contrast, the pretopological approach does not necessarily take agents that are in-
dividually the most powerful, but those that as a group are influential, so the individuals
in the group may be cheaper or easier to persuade.

The teambuilder index, on the other hand, while not irrelevant to the amount of
spreading (as can be seen by the difference between the targets with the largest and
smallest teambuilder indices) , did not perform particularly well as a strategy for select-
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40: procedure cascadeDiffusion(())
41: for all t ∈ steps do
42: for all agent ∈ agents do
43: if agent.opiniont−1 == 0 ∧ agent.opiniont == 1 then . just changed

opinions
44: for all neigh ∈ agent.neighbors do
45: if neigh.opiniont == 0 then
46: rand ← random(0, 1)
47: if rand < edge[agent, neigh].in f luence then
48: neigh.opiniont+1
49: end if
50: end if
51: end for
52: end if
53: end for
54: end for
55: end procedure
56:
57: procedure thresholdDiffusion(())
58: for all t ∈ steps do
59: for all agent ∈ agents do
60: if sum(agent.neighbors.opinion == 1)/|agent.neighbors | >

agent.threshold then . neighbors fraction with opinion 1
61: agent.opinion = 1
62: else
63: agent.opinion = 0
64: end if
65: end for
66: end for
67: end procedure
68:
69: procedure utilityDiffusion(())
70: for all t ∈ steps do
71: for all agent ∈ agents do
72: if agent.con f ormity ∗ (1 − 2 ∗ sum(agent.neighbors.opinion ==

1)/|agent.neighbors |) + (1 − agent.con f ormity) ∗ agent.motivation > 0 then
. The utility of 1 is bigger than that of 0

73: agent.opinion = 1
74: else
75: agent.opinion = 0
76: end if
77: end for
78: end for
79: end procedure
80:

ing the targets.
Another thing that we can notice is how correlated are the size of the pseudoclosure

with the final propagation of the opinion, proving that under the right circumstances
it should suffice to study the structure of the population to get a good idea of their
dynamics.
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Figure 8.1: Results of the cascade model of diffusion

A final interesting result is that the gti heuristic works consistently better at finding
big pseudoclosures than randompseudoclosure, although the number of random samples
had been chosen so it takes around three times more to select the targets randomly than
with gti.

The interest of finding good heuristics for the problem of finding large pseudoclo-
sures becomes obvious when we realize that no polynomial time algorithm may exist
unless P=NP. Indeed, we can see that by thinking that if we had a polynomial time
algorithm for finding the biggest pseudoclosure, we could apply it to the sets of a single
element, then to those of two elements, and follow until the biggest pseudoclosure would
include the whole space; this would give a polynomial time algorithm for the minimum
dominating set problem, a problem well known to be NP hard.
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Figure 8.2: Results of the threshold model of diffusion

8.2.2.2 Mixed model

A second type of model was designed so a more sophisticated pseudoclosure could be
used. The model is exactly the threshold model, but instead of just one network, we
added a second one, where nodes would select three elements at random (as long as they
are not connected in the first network), and they consider them their enemies. Under
this model a person changes opinion if the sum of his/her friends with the new opinion,
minus the enemies with the new opinion, divided by the total of connections, is bigger
than the threshold.

We defined a second pseudoclosure function, where someone will belong to the
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Figure 8.3: Results of the utility model of diffusion

pseudoclosure of a group if he/she has more than two friends in the group, and less
than two enemies. The strategies that use this new pseudoclosure have a mm subindex
(e.g.pseudoclosuremm).

For this model 8.4 the difference of propagation can be seen from the smallest
amounts of homophily level.

The size of the different pretopologies is also correlated to the final propagation in
the mixed model, proving that our intuition in defining the pseudoclosuremm was also
correct, but contrary to our beliefs neither the gtimm nor the random_pseudoclosuremm

performed any better than regular gti or pagerank in identifying groups with large
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pseudoclosuremm. The performance being quite similar for random networks, but get-
ting increasingly worse as the homophily level augments.

It is worth noticing though that the gtimm heuristic was once again much more suc-
cessful than random_pseudoclosuremm in identifying groups with large pseudoclosure.

Figure 8.4: Results of the Mixed Model diffusion

8.2.3 Conclusion

Our most interesting results come from the heuristic based on the teambuilder notion,
the gti or group_teambuilder strategy. This not only showed to be a better selection
strategy for spreaders than all the network-based ones, but perhaps more importantly,
seems to be a much better way to uncover sets with a large pseudoclosure than a simple
random strategy, and this using a lot less resources. This last result is particularly
important if we want to impose pretopology as a pertinent choice for structuring systems
in a world where those systems and the data describing them are becoming ever larger.
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8.3 Learning Propagation

Here we will take the same experimentation setting proposed in [36], in order to test
our approach to learn a pretopological space. In this setting, the pseudoclosure function
models the propagation of a forest fire inside of a grid. The set of cells of the grid is the
universe set U of the pretopology. Each cell represents a section of the forest that can
be either vulnerable, invulnerable or burning, and each cell has a set of neighborhoods
that determines if it belongs to a pseudoclosure or not.

Although the authors of the paper talk about cells with a Moore neighborhood 8.3,
this is different to the Moore neighborhood presented in the Z2 subsection. In that
section we considered the Moore neighborhood as a single neighborhood, i.e. a prefilter
basis with a single set of eight elements. Here, instead, it’s considered as a prefilter
basis with eight sets, each with one element. This gives eight different networks in our
framework, and multiple different ways of combining them with a DNF(.).

Figure 8.5: Different neighborhoods

Three different types of DNF(.)’s will be studied, each will produce a different type
of pseudoclosure, and a different fire propagation:

• Simple = V3 ∨ V5 ∨ V6

• Medium = (V3 ∧ V5) ∨ (V4 ∧ V7) ∨ V6

• Hard = V2 ∨ V4 ∨ (V1 ∧ V3) ∨ (V3 ∧ V6) ∨ (V5 ∧ V6 ∧ V7)

Each DNF(.) models a different propagation process influenced by the wind. For
example, the simple DNF(.) models a south-west wind influence that will make the fire
propagate towards the up-right corner of the grid.

The model starts with a single cell burning, and the fire propagates by applying
the pseudoclosure iteratively. The invulnerable cells have no neighborhoods other than
their own singleton, so they cannot burn, nor propagate the fire. The set of burned
cells at the moment when the fire stops expanding is an elementary closed set of the
pretopology.
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We will use six different environments to study the propagation; each will be a square
grid with a different percentage (0%, 10%, 20%, 30%, 40%, 50%) of invulnerable cells
chosen at random. Three sizes of grid will be tested: 15 × 15, 25 × 25 and 35 × 35.

For each DNF(.) we will calculate the elementary closed set of 30% of the cells, choos-
ing among vulnerable singletons, and we will pass it to the BiggestSmallerClousure(.)
algorithm 6.3 in order to estimate the DNF(.) and compare it to the original one.

8.3.1 Complexity

Before reviewing the results of the comparison, let’s look at the complexity of our al-
gorithm and check it for this particular case. For each closure C we need to see which
elements x < C belong to each network pseudoclosure ai(.). Now, if n is the number of
cells per side of the grid (15, 25 or 35 in our example), we know that this can be done
in C · G · ((n2)2), where C is the set of closures, and G is the set of networks. This is
just the complexity of one application of the pseudoclosure function for each closure7.1,
since the number of different elements in the grid equals (n2).

After we have done that, we will have the f orbidden conjunctions. The rest of the
algorithm 6.3 will be calculated in constant time for every size of the input, but it could
be very large if the number of networks is. To get a superior bound for this second part
we can take every possible conjunction 2G, and for each of them compare it in terms of
inclusion to every other 2G −1 possible conjunction. This would give us an upper bound
of 22·G inclusion comparisons.

We can now estimate the time necessary for the whole algorithm as:

30
100 · n

2 · 8 · n4 · x1 + 216 · x2=
2.4 · n6 · x1 + 216 · x2

where x1 is the time needed for a multiplication and x2 the time needed for an
inclusion comparison. To test if our calculations were correct, we recorded the time
taken to estimate the DNF(.) for 40 different sides of grid, going from 10×10 to 50×50.
We did this 10 times for each size, and we solved the following equation to get x1 and
x2 : [

2.4 · 106 216

2.4 · 116 216

] [
x1
x2

]
=

[
a10
a11

]
where a10 and a11 were the average times taken for the 10 × 10 and 11 × 11 grids,

respectively.
A plot of the estimated function of time compared with the real time taken can be

seen in figure 8.3.1. We can see that the growth pattern seems similar, and the real time
never surpasses the estimated one.

It’s important to realize that we are taking as input the side of the grid, which makes
the number of elements (each cell of the grid) grow quadratically. For the more natural
input of number of elements in the set, the algorithm would grow in n3.

We finish pointing out that unless the number of networks is really big, the time
taken for the second part is less than the time taken for the first part of the algorithm.
For example, in this particular case x1 and x2 were on the same order of magnitude,
and since we know that 10 > 23 =⇒ 106 > 218 > 216, then even for the smallest grid
the time for the second part was less than the time for the first one, which was just the
time of one pseudoclosure calculation. Loosely speaking we estimated the DNF(.) in
just the time necessary for two pseudoclosure calculations, when all previous algorithms
required thousands of structural analysis calculations, which in turn required hundreds
of pseudoclosure calculations.
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Figure 8.6: Time performance biggest smaller pseudoclosure
Average time comparison between the estimated and the real time of the algorithm over 10

runs, for different sizes of the grid. Errors are so small that are imperceptible.

8.3.2 Accuracy estimation

The original paper studies how close were the closures produced by the estimated DNF(.)
compared to the original ones. The same analysis wouldn’t be of interest here, since
our algorithm recovers the exact same closures every time. It’s worth to notice that
this perfect score in every setting wasn’t achieved by any of the proposed algorithms,
although the MI LPS was very close.

Instead, we will look at the DNF(.) as a set of conjunctions, and we will study how
close in terms of precision and recall are the estimated DNF(.)’s. We remind that the
precision is defined as the ratio between the cardinality of the intersection of the sets and
that of the estimated set, and the recall is defined as the ratio between the cardinality of
the intersection of the sets and that of the original set. The results can be seen in tables
8.3.2 and 8.3.2. We can see that the differences in size and complexity of the DNF(.)
don’t alter the results significantly, in opposition to the number of blocked cells, that
looks quite determinant. Neither too few nor too many cells produce a perfect recall,
while all the settings in between do that. The precision, on the other hand, is much
lower, although better results are again produced around 30% of blocked cells. This
low precision score seems correct, since our estimation is the fastest growing disjunctive
normal form that will have the target closures, so its natural that for some settings the
elimination of some conjunctions will produce the same closures at a slower pace.

We are not throwing away the results found in [36]. Our approach, although much
more efficient in the case where a perfect solution to the problem exists, could potentially
have a very poor performance (not in time but in prediction) where only approximative
solutions exist.
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blocked 15 25 35
simple medium hard simple medium hard simple medium hard

0 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333
10 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556
20 0.563 0.563 0.563 0.563 0.563 0.563 0.563 0.563 0.563
30 0.628 0.226 0.532 0.628 0.305 0.532 0.628 0.368 0.532
40 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499
50 0.414 0.414 0.414 0.414 0.414 0.414 0.414 0.414 0.414

Table 8.1: Average precision BiggestSmallerLSP
Average precision for 10 repetitions of the estimated DNF(.) in terms of size of the grid, difficulty of the original

DNF(.) and percentage of blocked squares.

blocked 15 25 35
simple medium hard simple medium hard simple medium hard

0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
30 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
50 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Table 8.2: Average precission BiggestSmallerLSP
Average recall for 10 repetitions of the estimated DNF(.) in terms of size of the grid, difficulty of the original

DNF(.) and percentage of blocked squares.
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0 1 2 3 4 5 6 7

0 ∧ 1 0 ∧ 2 0 ∧ 3 0 ∧ 4 0 ∧ 5 0 ∧ 6 0 ∧ 7 1 ∧ 2 1 ∧ 3
1 ∧ 4 1 ∧ 5 1 ∧ 6 1 ∧ 7 2 ∧ 3 2 ∧ 4 2 ∧ 5 2 ∧ 6 2 ∧ 7
3 ∧ 4 3 ∧ 5 3 ∧ 6 3 ∧ 7 4 ∧ 5 4 ∧ 6 4 ∧ 7 5 ∧ 6 5 ∧ 7

6 ∧ 7

0 ∧ 1 ∧ 2 0 ∧ 1 ∧ 3 0 ∧ 1 ∧ 4 0 ∧ 1 ∧ 5 0 ∧ 1 ∧ 6 0 ∧ 1 ∧ 7 0 ∧ 2 ∧ 3
0 ∧ 2 ∧ 4 0 ∧ 2 ∧ 5 0 ∧ 2 ∧ 6 0 ∧ 2 ∧ 7 0 ∧ 3 ∧ 4 0 ∧ 3 ∧ 5 0 ∧ 3 ∧ 6
0 ∧ 3 ∧ 7 0 ∧ 4 ∧ 5 0 ∧ 4 ∧ 6 0 ∧ 4 ∧ 7 0 ∧ 5 ∧ 6 0 ∧ 5 ∧ 7 0 ∧ 6 ∧ 7
1 ∧ 2 ∧ 3 1 ∧ 2 ∧ 4 1 ∧ 2 ∧ 5 1 ∧ 2 ∧ 6 1 ∧ 2 ∧ 7 1 ∧ 3 ∧ 4 1 ∧ 3 ∧ 5
1 ∧ 3 ∧ 6 1 ∧ 3 ∧ 7 1 ∧ 4 ∧ 5 1 ∧ 4 ∧ 6 1 ∧ 4 ∧ 7 1 ∧ 5 ∧ 6 1 ∧ 5 ∧ 7
1 ∧ 6 ∧ 7 2 ∧ 3 ∧ 4 2 ∧ 3 ∧ 5 2 ∧ 3 ∧ 6 2 ∧ 3 ∧ 7 2 ∧ 4 ∧ 5 2 ∧ 4 ∧ 6
2 ∧ 4 ∧ 7 2 ∧ 5 ∧ 6 2 ∧ 5 ∧ 7 2 ∧ 6 ∧ 7 3 ∧ 4 ∧ 5 3 ∧ 4 ∧ 6 3 ∧ 4 ∧ 7
3 ∧ 5 ∧ 6 3 ∧ 5 ∧ 7 3 ∧ 6 ∧ 7 4 ∧ 5 ∧ 6 4 ∧ 5 ∧ 7 4 ∧ 6 ∧ 7 5 ∧ 6 ∧ 7

0 ∧ 1 ∧ 2 ∧ 3 0 ∧ 1 ∧ 2 ∧ 4 0 ∧ 1 ∧ 2 ∧ 5 0 ∧ 1 ∧ 2 ∧ 6 0 ∧ 1 ∧ 2 ∧ 7
0 ∧ 1 ∧ 3 ∧ 4 0 ∧ 1 ∧ 3 ∧ 5 0 ∧ 1 ∧ 3 ∧ 6 0 ∧ 1 ∧ 3 ∧ 7 0 ∧ 1 ∧ 4 ∧ 5
0 ∧ 1 ∧ 4 ∧ 6 0 ∧ 1 ∧ 4 ∧ 7 0 ∧ 1 ∧ 5 ∧ 6 0 ∧ 1 ∧ 5 ∧ 7 0 ∧ 1 ∧ 6 ∧ 7
0 ∧ 2 ∧ 3 ∧ 4 0 ∧ 2 ∧ 3 ∧ 5 0 ∧ 2 ∧ 3 ∧ 6 0 ∧ 2 ∧ 3 ∧ 7 0 ∧ 2 ∧ 4 ∧ 5
0 ∧ 2 ∧ 4 ∧ 6 0 ∧ 2 ∧ 4 ∧ 7 0 ∧ 2 ∧ 5 ∧ 6 0 ∧ 2 ∧ 5 ∧ 7 0 ∧ 2 ∧ 6 ∧ 7
0 ∧ 3 ∧ 4 ∧ 5 0 ∧ 3 ∧ 4 ∧ 6 0 ∧ 3 ∧ 4 ∧ 7 0 ∧ 3 ∧ 5 ∧ 6 0 ∧ 3 ∧ 5 ∧ 7
0 ∧ 3 ∧ 6 ∧ 7 0 ∧ 4 ∧ 5 ∧ 6 0 ∧ 4 ∧ 5 ∧ 7 0 ∧ 4 ∧ 6 ∧ 7 0 ∧ 5 ∧ 6 ∧ 7
1 ∧ 2 ∧ 3 ∧ 4 1 ∧ 2 ∧ 3 ∧ 5 1 ∧ 2 ∧ 3 ∧ 6 1 ∧ 2 ∧ 3 ∧ 7 1 ∧ 2 ∧ 4 ∧ 5
1 ∧ 2 ∧ 4 ∧ 6 1 ∧ 2 ∧ 4 ∧ 7 1 ∧ 2 ∧ 5 ∧ 6 1 ∧ 2 ∧ 5 ∧ 7 1 ∧ 2 ∧ 6 ∧ 7
1 ∧ 3 ∧ 4 ∧ 5 1 ∧ 3 ∧ 4 ∧ 6 1 ∧ 3 ∧ 4 ∧ 7 1 ∧ 3 ∧ 5 ∧ 6 1 ∧ 3 ∧ 5 ∧ 7
1 ∧ 3 ∧ 6 ∧ 7 1 ∧ 4 ∧ 5 ∧ 6 1 ∧ 4 ∧ 5 ∧ 7 1 ∧ 4 ∧ 6 ∧ 7 1 ∧ 5 ∧ 6 ∧ 7
2 ∧ 3 ∧ 4 ∧ 5 2 ∧ 3 ∧ 4 ∧ 6 2 ∧ 3 ∧ 4 ∧ 7 2 ∧ 3 ∧ 5 ∧ 6 2 ∧ 3 ∧ 5 ∧ 7
2 ∧ 3 ∧ 6 ∧ 7 2 ∧ 4 ∧ 5 ∧ 6 2 ∧ 4 ∧ 5 ∧ 7 2 ∧ 4 ∧ 6 ∧ 7 2 ∧ 5 ∧ 6 ∧ 7
3 ∧ 4 ∧ 5 ∧ 6 3 ∧ 4 ∧ 5 ∧ 7 3 ∧ 4 ∧ 6 ∧ 7 3 ∧ 5 ∧ 6 ∧ 7 4 ∧ 5 ∧ 6 ∧ 7

0 ∧ 1 ∧ 2 ∧ 3 ∧ 4 0 ∧ 1 ∧ 2 ∧ 3 ∧ 5 0 ∧ 1 ∧ 2 ∧ 3 ∧ 6 0 ∧ 1 ∧ 2 ∧ 3 ∧ 7
0 ∧ 1 ∧ 2 ∧ 4 ∧ 5 0 ∧ 1 ∧ 2 ∧ 4 ∧ 6 0 ∧ 1 ∧ 2 ∧ 4 ∧ 7 0 ∧ 1 ∧ 2 ∧ 5 ∧ 6
0 ∧ 1 ∧ 2 ∧ 5 ∧ 7 0 ∧ 1 ∧ 2 ∧ 6 ∧ 7 0 ∧ 1 ∧ 3 ∧ 4 ∧ 5 0 ∧ 1 ∧ 3 ∧ 4 ∧ 6
0 ∧ 1 ∧ 3 ∧ 4 ∧ 7 0 ∧ 1 ∧ 3 ∧ 5 ∧ 6 0 ∧ 1 ∧ 3 ∧ 5 ∧ 7 0 ∧ 1 ∧ 3 ∧ 6 ∧ 7
0 ∧ 1 ∧ 4 ∧ 5 ∧ 6 0 ∧ 1 ∧ 4 ∧ 5 ∧ 7 0 ∧ 1 ∧ 4 ∧ 6 ∧ 7 0 ∧ 1 ∧ 5 ∧ 6 ∧ 7
0 ∧ 2 ∧ 3 ∧ 4 ∧ 5 0 ∧ 2 ∧ 3 ∧ 4 ∧ 6 0 ∧ 2 ∧ 3 ∧ 4 ∧ 7 0 ∧ 2 ∧ 3 ∧ 5 ∧ 6
0 ∧ 2 ∧ 3 ∧ 5 ∧ 7 0 ∧ 2 ∧ 3 ∧ 6 ∧ 7 0 ∧ 2 ∧ 4 ∧ 5 ∧ 6 0 ∧ 2 ∧ 4 ∧ 5 ∧ 7
0 ∧ 2 ∧ 4 ∧ 6 ∧ 7 0 ∧ 2 ∧ 5 ∧ 6 ∧ 7 0 ∧ 3 ∧ 4 ∧ 5 ∧ 6 0 ∧ 3 ∧ 4 ∧ 5 ∧ 7
0 ∧ 3 ∧ 4 ∧ 6 ∧ 7 0 ∧ 3 ∧ 5 ∧ 6 ∧ 7 0 ∧ 4 ∧ 5 ∧ 6 ∧ 7 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5
1 ∧ 2 ∧ 3 ∧ 4 ∧ 6 1 ∧ 2 ∧ 3 ∧ 4 ∧ 7 1 ∧ 2 ∧ 3 ∧ 5 ∧ 6 1 ∧ 2 ∧ 3 ∧ 5 ∧ 7
1 ∧ 2 ∧ 3 ∧ 6 ∧ 7 1 ∧ 2 ∧ 4 ∧ 5 ∧ 6 1 ∧ 2 ∧ 4 ∧ 5 ∧ 7 1 ∧ 2 ∧ 4 ∧ 6 ∧ 7
1 ∧ 2 ∧ 5 ∧ 6 ∧ 7 1 ∧ 3 ∧ 4 ∧ 5 ∧ 6 1 ∧ 3 ∧ 4 ∧ 5 ∧ 7 1 ∧ 3 ∧ 4 ∧ 6 ∧ 7
1 ∧ 3 ∧ 5 ∧ 6 ∧ 7 1 ∧ 4 ∧ 5 ∧ 6 ∧ 7 2 ∧ 3 ∧ 4 ∧ 5 ∧ 6 2 ∧ 3 ∧ 4 ∧ 5 ∧ 7
2 ∧ 3 ∧ 4 ∧ 6 ∧ 7 2 ∧ 3 ∧ 5 ∧ 6 ∧ 7 2 ∧ 4 ∧ 5 ∧ 6 ∧ 7 3 ∧ 4 ∧ 5 ∧ 6 ∧ 7

0 ∧ 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 0 ∧ 1 ∧ 2 ∧ 3 ∧ 4 ∧ 6 0 ∧ 1 ∧ 2 ∧ 3 ∧ 4 ∧ 7
0 ∧ 1 ∧ 2 ∧ 3 ∧ 5 ∧ 6 0 ∧ 1 ∧ 2 ∧ 3 ∧ 5 ∧ 7 0 ∧ 1 ∧ 2 ∧ 3 ∧ 6 ∧ 7
0 ∧ 1 ∧ 2 ∧ 4 ∧ 5 ∧ 6 0 ∧ 1 ∧ 2 ∧ 4 ∧ 5 ∧ 7 0 ∧ 1 ∧ 2 ∧ 4 ∧ 6 ∧ 7
0 ∧ 1 ∧ 2 ∧ 5 ∧ 6 ∧ 7 0 ∧ 1 ∧ 3 ∧ 4 ∧ 5 ∧ 6 0 ∧ 1 ∧ 3 ∧ 4 ∧ 5 ∧ 7
0 ∧ 1 ∧ 3 ∧ 4 ∧ 6 ∧ 7 0 ∧ 1 ∧ 3 ∧ 5 ∧ 6 ∧ 7 0 ∧ 1 ∧ 4 ∧ 5 ∧ 6 ∧ 7
0 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 6 0 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 7 0 ∧ 2 ∧ 3 ∧ 4 ∧ 6 ∧ 7
0 ∧ 2 ∧ 3 ∧ 5 ∧ 6 ∧ 7 0 ∧ 2 ∧ 4 ∧ 5 ∧ 6 ∧ 7 0 ∧ 3 ∧ 4 ∧ 5 ∧ 6 ∧ 7
1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 6 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 7 1 ∧ 2 ∧ 3 ∧ 4 ∧ 6 ∧ 7
1 ∧ 2 ∧ 3 ∧ 5 ∧ 6 ∧ 7 1 ∧ 2 ∧ 4 ∧ 5 ∧ 6 ∧ 7 1 ∧ 3 ∧ 4 ∧ 5 ∧ 6 ∧ 7

2 ∧ 3 ∧ 4 ∧ 5 ∧ 6 ∧ 7

0 ∧ 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 6 0 ∧ 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 7 0 ∧ 1 ∧ 2 ∧ 3 ∧ 4 ∧ 6 ∧ 7
0 ∧ 1 ∧ 2 ∧ 3 ∧ 5 ∧ 6 ∧ 7 0 ∧ 1 ∧ 2 ∧ 4 ∧ 5 ∧ 6 ∧ 7 0 ∧ 1 ∧ 3 ∧ 4 ∧ 5 ∧ 6 ∧ 7

0 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 6 ∧ 7 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 6 ∧ 7

0 ∧ 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 6 ∧ 7

Figure 8.7: Example of DNF estimation
Example of closures for two different sizes of grid under the hard DNF(.) = V2 ∨V4 ∨ (V1 ∧V3) ∨ (V3 ∧V6) ∨ (V5 ∧V6 ∧V7).

On red the combinations of neighborhoods that didn’t propagate; on salmon those run out because they are more general than
the red ones; on dark green those kept; on light green those run out because they are more specific than those already selected.

The forbidden conjunctions are: (V0 ∧V1), (V5 ∧V6), (V6 ∧V7) and (V0 ∧V3 ∧V5 ∧V7), and the estimated DNF(.) is
V2 ∨V4 ∨ (V0 ∧V6) ∨ (V1 ∧V3) ∨ (V1 ∧V5) ∨ (V1 ∧V6) ∨ (V1 ∧V7) ∨ (V3 ∧V6) ∨ (V5 ∧V6 ∧V7)
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Figure 8.8: Cluster Pseudoclosure
Example of closures for two different sizes of grid under the hard DNF(.) = V2 ∨V4 ∨ (V1 ∧V3) ∨ (V3 ∧V6) ∨ (V5 ∧V6 ∧V7). On top,
three closures for a simulation with a 20 × 20 square grid. On the bottom one closure for a simulation with a 60 × 60 square grid.
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Chapter 9

Clustering

This chapter explains how some of the concepts that have been introduced so far can be
used to find clusters inside of a space. There is not a precise definition of what a cluster
is, but the general idea is that of forming groups inside of a set, such that elements in
a same group are similar among them, and dissimilar from the rest. We compare our
ideas with some of the classical clusterization algorithms of points in R2, and we show
that our algorithm performs at pair with the state of the art, but is much more general,
being easily adapted to non-metric spaces.

9.1 Previous Pretopological works on Clusterization

The concepts of pretopology have already been used for the study of clusterization in a
series of works. Although these works differ in strategy and applications, they all have
in common the use of pretopology as a way of improving the K-means algorithm.

Although the term K-means was introduced in [98], what has come to be known as
[?] nowadays is the following algorithm presented in [96]:

• We define the number k of clusters we wish to identify.

• We select k random points Pi, i ∈ {1, 2, . . . , k}.

• We add each element of our set to the cluster where the closest Pi belongs.

• We calculate the centroids of each cluster.

• We repeat the process with the centroids as the new set of Pi points.

This is an approximation algorithm for the original NP-hard problem, where given
a set S of points in Rd, we need to find k points called centers, such that the sum of the
squared Euclidean distance of each point in S to its closest center should be minimal.
The algorithm converges usually quite fast to a local minimum.

Although the algorithm has proven to perform quite well in many situations, it has
a certain number of drawbacks. First, it is a random algorithm, sensible to the choice
of the initial set of points Pi. This is usually dealt with by making multiple runs of
the algorithm and selecting the one with the best performance, but this increases the
calculations, and as with any random algorithm we may still make a poor selection. A
second problem is that the number of clusters should be known in advanced, something
that is usually not the case in practice.

The following pretopological algorithm was proposed to overcome those problems.
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9.1.1 MCPR

In [87, 88], Le et al. introduced the MCPR algorithm. They proposed to use the
structural analysis algorithm presented in5.1 before using K-means, so that the number
of clusters was equal to the number of minimal closed sets. They also defined a distance
inside a pretopological space, used it to determine the most densely connected element
inside each minimal closed sets, and selected the element as the initial center of the
cluster. Finally, the same distance was used to decide the closest center to each element
of the space, allowing to use K-means in non-metric pretopological spaces.

Recently, in [32], Bui et al. used these notions to clusterize a corpus of documents.
They used Latent Dirichlet Allocation (LDA) to identify the topics of each document,
and built two kinds of document relations: one using the mayor topic, the other using
the Hellinger distance between the topic vectors. Eventually they defined a weak pseu-
doclosure function from those two relations, and applied the MCPR algorithm. Their
results were found to be competitive with the state of the art.

Although these have been great improvements to the standard K −means algorithm,
some drawbacks still remain: one is that K − means is a partition algorithm (i.e. every
set ends up in a cluster), and this makes impossible the detection of noise in the original
set; another is that clusters have more or less equal size.

A final issue concerning the MCPR is it computational cost. Indeed, Levorato [90]
estimates the complexity of this algorithm for a worst case scenario as (O)(n5) in terms
of the number of pseudoclosure operations necessary. Since we saw that our framework
calculates the pseudoclosure in (O)(n2), with n being the number of elements in the
space, we get a total complexity of (O)(n7) in terms of the size of the space. Even if
polynomial, this becomes prohibitively expensive for sets relatively small.

In the next section we present a new pretopological method of clusterization that
solves the aforementioned problems, all while keeping the possibility of finding clusters
in non-metric spaces.

9.2 Prepoclusters

In this section we clusterize using the degree−n generalizations of the structural analysis
introduced in sections structural analysis 5.1 and quasihierarchy 5.3. The idea is quite
simple, we create a pretopological space, we calculate the quasihierarchy of elementary
closed sets of degree-n, and we identify the biggest elementary closed sets with the
clusters. These are the elements that are on top of the hierarchy.

Using the degree − n generalizations we are able to formalize the following simple
notion: an element x joins a group if the elements that are closer to it inside
the group, are not much closer among them, than what they are to x. The idea
is to make a cluster grow adding elements that will not alter the density too much. This
prevents two clusters that have an element between them to be joined into one cluster.
That intermediary element will probably join both clusters, but this will not make a
point in cluster A to be sufficiently attracted to cluster B as a whole. The addition of
an element to a group is a property of the group, which is exactly what pretopology can
model very well.

This is where the definition of degree-n elementary sets becomes important, since we
need to start the cluster with a set that is sufficiently big to attract some elements, but
only if they are well connected to the group as a whole.

To formalize the notion just mentioned we need to define what we mean by ”being
close”. We figured this definition was dependent on the density of the points, so we
devised an heuristic to quantify the density. For this, we defined a variable square_length
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and a variable real_points:

• square_length is the length of a grid cell, if we divided the smallest rectangle that
covers all points, into a grid with points cells; points being the number of points
in the dataset. More specifically:

– We take the difference ∆x between the point that is more to the right, and
the one that is more to the left.

– We take the difference ∆y between the highest, and the lowest point.
– We take the area of the rectangle ∆x × ∆y, and we divide it by points, the

number of points in the dataset.
– We have now the area corresponding to each point, so we take the square

root of that value to get the square_length

• To calculate real_points we consider that all points that are inside a same square
of length square_length are a unique point, and real_points is the number of those
points.

What we are doing is basically estimate how many cells of the grid would be occupied,
if we were to define a grid over the dataset.

Having this in mind, let us pass review to the exact parameters that are needed for
the algorithm:

• The degree n of the initial sets.

• The radius of the balls to make the geometric network over which we will build
the pretopology. I.e, pairs of points that are closer than radius are connected in
the network, the rest are not. The strength of the link between x and y will be
equal to 1 − distancexy

radius , to that closer points will have bigger strength.

• The threshold θN associated to the network in our framework.

• The threshold θQ for the strength of the links in the quasihierarchy 5.3. I.e, after
calculating the strength of the links between the different quasiclosures, those that
are stronger than θQ are considered connected, the others are not.

These parameters needed to be chosen manually, and it may seem difficult to do so
in a way that proves to be useful, but we tested the same set of parameters over six
different datasets with great results, and we only needed a slight modification to make
it work on the seventh dataset.

We used degree = 4 and θQ = 0.5 for all the datasets.
For the six datasets shown in figure 9.1 we used radius = 2 × square and thetaN =
points

3×real_points . These are parameters that were found by some trial and error, guided by
the density of the points. The figure shows the results of the pretopolclusters compared
with a series of classical clusterization algorithms. These are the data used by scikit-
learn, the standard package of machine learning in python, for their comparison of the
algorithms. We can see that the pretopoclusters always find the clusters we would hope
for it to find; an exploit only met by DBSCAN. We can also see how those are the only
two algorithms capable of identifying noise.

For a second data set we used radius = 2× square and thetaN = points/real_points.
Figure 9.2 shows the results for the K-means and Agglomerativealgorithm. We can
see that although the parameters where chosen wisely (six clusters were supposed to be
found), they perform very poorly because of the multiple drawbacks we have mentioned.
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Figure 9.3 shows the results for the HDBSCAND and Pretopoloclusters algorithm.
HDBSCAN is a recent algorithm that ”extends DBSCAN by converting it into a hierar-
chical clustering algorithm, and then using a technique to extract a flat clustering based
in the stability of clusters”. This algorithm has shown even better performance than
DBSCAN in situations where clusters have many scarce points between them. We can
see that our algorithm finds almost the exact same clusters. It should be mentioned that
for this configuration, those sets that did not grow to twice their size were considered
noise.

The difference in parametrization between the first group of six datasets and the
second is mostly due to the variance in density over different zones that is found in
the second dataset. Future works may include different networks according to different
densities to better account for this.

9.2.1 Final remarks

We have seen how the concepts of pretopology allow us to find clusters in a way that
is at pair with the state of the art. On the other hand, this is but the first work in a
direction that looks very promising to us.

A particularly important aspect of the algorithm proposed is its possibility to be
extended to non − V pretopologies. Our example is built on a pretopological space of
type V , but the fundamental property for the structuring process is not met, notably
that the points in the intersection of a pair of sets, belong only to sets that are perfectly
contained in that intersection. This is the property that fails in a general pretopological
space preventing its structural analysis, so this extension solves the problem.

We should also notice that our approach is fundamentally different from other hier-
archical approaches to clustering, in the sense that those algorithms start from singleton
clusters and join different clusters one by one, until the whole space is one big cluster.
We then need to decide a cut in the hierarchy, that is, at what point in the process of
building the hierarchy we will stop joining clusters together and consider that we have
found the clusters we were looking for. In the case of pretopoclusters there is no need
to define such a cut zone, since the clusters emerge naturally as the biggest elementary
quasiclosed sets. Also, as with DBSCAN, our approach allows the identification of noise.

A final characteristic is that our algorithm can find elements belonging to two clus-
ters, an idea already present in the recent literature about network community detection
[61]
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Figure 9.1: Clustering Results Comparison
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Figure 9.2: Cluster K-Means and Agglomerative
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Figure 9.3: Cluster HDBSCAND and Pretopocluster
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Chapter 10

Conclusion

We have seen throughout the thesis many examples of how pretopology could be an
appropriate way to model the structure of some real world phenomena, capable of mod-
eling phenomena that could not be represented with network theory without loosing
information.

We have made an effort to show that pretopology needs not be just a modeling
tool, but it can actually become a practical way to study the systems it models. We
proved, for example, that some pretopological measures of centrality actually work best
in certain context.

A great effort was put into devising an economical and practical way to treat a
pretopological space; one that would allow us to store a space and implement the classical
algorithms without having to change the way we conceive a pretopology, as a set theoretic
framework. It was shown through many examples how general this framework is, and
how practical it was to study the complexity of the existent algorithms and to connect
our theory with some very active fields of research, such as network theory and ILP.
It was also the framework that permitted us to implement in a practical fashion a
pretopological Python library.

Our most interesting result is probably the one concerning the quasihierarchies. Not
only we devised a way to extend the structural analysis to every kind of pretopological
space, but we showed how effective it was dealing with clustering problems.

It is also in that area that we see the biggest prospects. When we used quasihier-
archies to find clusters, a fair amount of manual parametrization was made. The next
logical step in the development of the theory will be to put the notions of quasihierarchy
and LPS to work together, in order to get a semi-supervised way to learn to recognize
clusters.

It seems to us particularly promising the idea of using a non−V pretopological space
to model the semantic relations between words and groups, and to use the quasihierarchy
concept along with the LPS algorithms to uncover the topics of a document.

Other possible prospects are the following:

• Explore the generalizations mentioned in section three: dynamic petopology, ran-
dom pretopology, weighted pretopology.

• Improve an add new functions to the library. A particularly urgent change concerns
the store of sparse matrices. Indeed, we are storing the whole adjacency matrix for
every network, and we have seen that the formalization of pretopological spaces
described by some pseudoclosures needs a huge number of networks.

• Better explore the connections to ILP and network algorithms. Variations of the
algorithms related to the minimum domination set may be particularly helpful in
finding sets with large pseudoclosures.
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Appendix A

Python Library

class Prenetwork
Description: A prenetwork is the combination of a network -descrived as its adjacency
matrix- and a list list of tuples (threshold,weight) associated to it.

• Attributes:

– network:
The adjacency matrix that describes this network.

– weights:
A list of weights associated to each network

– thresholds:
A list of thresholds associated to each network

Comments: A prenetwork is a way of storing multiple networks in one single adjacency
matrix. One prenetwork represents each of the networks obtained by multiplying the
adjacency matrix by one of the weights, and the corresponding threshold associated to it.

This will also allow some improvements on the calculation of the pseudolosure , since
the matrix multiplication will be done only once, and the resulting vector is the one
that will be multiplied by the different weights and compared to the different thresholds.

One example of the utility of this is given by the use of a network with 1 and
−1 as weights, and θ and −θ as thresholds. This allow us to model the membership to
a pseudoclosure and its negation in one network.

Example: A Prenetwork with adjacency matrix A and list of tuples [(1, 1),(2,
1),(1,2)], is equivalent to the pretopology described by three networks with adjacency
matrices A, A and 2A, and three thresholds θ1 = 1, θ2 = 2 and θ3 = 1. This not only
allows us to stock multiple networks saving a lot of space, but also the pseudoclosure
can be calculated much faster, since the matrix multiplication will be done only once,
and the resulting vector is the one that will be multiplied by the different weights and
compared to the different thresholds.
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class PretopologicalSpace

Description: This is the class that has all the basic functionalities of a general pretopo-
logical space defined under our network.

• Attributes:

– prenetworks:
A list of the Prenetworks (c.r. class Prenetwork) that define a space.

– prenetwork_indices:
A list of the prenetwork indexes associated to each network. e.g. If the first

prenetwork represents five different networks, then the list will start with five zeros.

– thresholds:
A list of the thresholds associated to each network.

– weights: A list of the weights associated to each network..

– dnf:
The DNF(.) that characterizes the pretopological space, represented as a list of

lists. Each of the nested lists contains the indices of the networks that belong to a
same conjunction.

– size:
Returns the number of elements of the space.

• Methods:

– pseudoclosure(set):
Returns a set with the elements of the pseudoclosure of set.

– add_ prenetworks(prenetworks):
Adds the elements of prenetworks to the list of prenetworks of the space. It also

updates the network_indices, thresholds and weights attributes of the space.

– add_ conjunction(conjunction):
Adds a conjunction, represented by a list of indices, to dnf.

Comments: Every time we talk about a set, we are talking about its membership numpy
array.
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class PretopologicalSpaceEnv(PretopologicalSpace)
Description: The class extends the PretopologicalSpace class so it can have an envi-
ronment associated.

• Attributes:

– environment: A numpy matrix where each row represents an element of the
space, and each column is the value of a characteristic of the element. The
environment could be associated to a population of agents.

– attribute_labels: A list of strings specifying the name of the attributes rep-
resented by the columns.

Comments: The purpose of this class is build pretopologies on sets with more complex
elements. This will allow to define different rules for the pseudoclosure based on the
different characteristics of the elements.

JULIO LABORDE 111



class PretopologicalSpaceGrid(PretopologicalSpaceEnv)
Description: The class extends the PretopologicalSpaceEnv class so the environment
associated to it can be a interpreted as a grid.

• Attributes:

– prenetworks: a list
– network_ indices:
– thresholds:
– dnf:
– size:

• Methods:

– create_n0(): Creates a network where each cell is connected to the one up
and to the left.

– create_n1(): Creates a network where each cell is connected to the one to
the left.

– create_n2(): Creates a network where each cell is connected to the one down
and to the left.

– create_n3(): Creates a network where each cell is connected to the one right
up.

– create_n4(): Creates a network where each cell is connected to the one right
down.

– create_n5(): Creates a network where each cell is connected to the one up
and to the right.

– create_n6(): Creates a network where each cell is connected to the one to
the right.

– create_n7(): Creates a network where each cell is connected to the one down
and to the right.

Comments: The names of the neighborhoods are the same used in section 8.2.
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module Metrics
Description: This is the module with functions necessary to calculate the biggest pseu-
doclosure and the team builder index.

• teambuilder(set, size):
Returns the set of teambuilder indices for the elements of the set as descrived in the

section dedicated to the teambuilder notion (i.e. 4.2).
For the moment the method can only be used with pretopologies descrived by a DNF(.)
with a single conjonction with one clause.

• biggest_pseudoclosure_greedy_teambuilder(set, size):
Returns the set of size=size with the biggest pseudoclosure, estimated using the

method descrived in the section dedicated to the teambuilder notion (i.e. 4.2).

• biggest_pseudoclosure_ilp(set, size, solver=”ECOS BB”):
Returns the set of size=size with the biggest pseudoclosure, estimated using the

method descrived in the section dedicated to ILP (i.e. 4.1).
This method can only be used with pretopologies descrived by a DNF(.) with only one
conjonction.
For the moment the method only works with the solver ECOS BB through the python
package for convex linear programming cvxpy citation

module Closures
Description: This is the module with functions necessary to calculate the closures of
degree n of a list of sets.
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Résumé

En étudiant un système complexe il

est naturel de s’interroger sur la struc-

turation de ses éléments, en opposi-

tion à s’intéresser seulement aux car-

actéristiques individuelles des com-

posantes. La manière traditionnelle

d’aborder cette problématique a été

de caractériser la structure à l’aide de

un graphe, où les sommets représen-

tent les composants du système, et

un lien connecte deux composants

s’il existe une relation entre l’une et

l’autre. Cependant cette théorie est

pertinente uniquement pour carac-

tériser des systèmes où les rapports

sous-jacents sont binaires. Nous

proposons ici l’utilisation de la pré-

topologie afin de traiter le cas où des

liens existent entre un élément et un

groupe.

Nos contributions incluent la formal-

isation d'un espace prétopologique

comme une combinaison de réseaux

et de seuils, avec des règles élémen-

taires pour l’appartenance d’un élé-

ment à une adhérence. Ceci nous

permet de stocker économiquement

un espace, et d'étudier efficacement

la complexité des algorithmes exis-

tants. Quelques algorithmes ont été

améliorés.

Quelques applications on été

développées. La première a été

la création d’une librairie pré-

topologique en Python. La librairie

est ensuite utilisée pour étudier

quelques problèmes liés à la dif-

fusion au sein d’un système. La

troisième et dernière application

consiste à utiliser la prétopologie

dans le contexte du partitionnement

de données.

Mots Clés

Prétopologie, Algorithmique,

Réseaux complexes, Diffusion

Abstract

When we study a complex system it

is natural to be interested in the struc-

ture of its elements, as opposed to

just caring about the individual char-

acteristics of the components. The

traditional way to deal with this issue

has been through a characterization

of the structure by the use of graphs,

where nodes represent the compo-

nents of the system, and an edge ex-

ists between two of them if there is

a relation connecting them. The the-

ory is nevertheless only appropriate

for the description of systems with bi-

nary underlying relations between the

components. We propose here the

use of pretopology to effectively treat

the case where connections exist be-

tween an element and a group.

Our contributions include a formaliza-

tion of a pretopological space in terms

of a simple group of rules over a set of

networks. This allow us to econom-

ically store a pretopological space,

and to effectively study the complex-

ity of the algorithms that have been

proposed. Some of these algorithms

were improved.

Some applications are developed.

The first of them is a Python library

where all of the previously reviewed

algorithms are implemented. After

presenting in a general manner the

faculties of the library, we use it

to study some diffusion phenomena

with the help of some agent based

models. We finish using some of the

notions introduced here to develop a

clusterization algorithm, that not only

performs on a par with the state of

the art on some artificial geometri-

cal data, but also has the advantage

of being immediately generalizable to

non-metrical spaces.

Keywords

Pretopology, Algorithmic, Complex

Networks, Diffusion
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